
Part I

Fluid Flow

1 Thermodynamics

A thermodynamic system consists of a body of matter isolated from its surroundings. We require two
independent intensive thermodynamic variables to define the state of matter inside a system.

• Intensive variables: pressure, temperature, density

• Extensive variables: volume, mass

• Equation of state: connects variables. example p = p(ρ, T )

• Process: takes you from state 1 to state 2 for a path parametrized by Temperature and pressure, for
example

We write changes in state in terms of state variables,

∂p =

(
∂p

∂ρ

)
T

+

(
∂p

∂T

)
ρ

1.0.1 Extensive Variables

• System mass M

• Total volume V

• Total Energy E

• Total Enthalpy: a thermodynamic quantity equivalent to the total heat content of a system.

H = H(ρ, T ) = E + pV

• Total Kinetic Energy K

• Heat Q

• Work done on a system W

1.0.2 Intensive Variables

• Specific volume V = V
M = 1

ρ

• Internal Energy: the energy contained within the system, excluding the kinetic energy of motion of the
system as a whole and the potential energy of the system as a whole due to external force fields. It
keeps account of the gains and losses of energy of the system that are due to changes in its internal
state.

e = e(ρ, T ) =
E

M

This is the variable of choice for closed systems
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• Enthalpy: a thermodynamic quantity equivalent to the total heat content of a system.

h = h(ρ, T ) = e+ pv

This is the variable of choice for an open system

• Entropy: a thermodynamic quantity representing the unavailability of a system’s thermal energy for
conversion into mechanical work, often interpreted as the degree of disorder or randomness in the
system.

s = s(ρ, T ) =
S

M

1.0.3 Gas Models

• Real Gas e = e(ρ, T ), cv = cv(ρ, T )

• Ideal Gas e = e(ρ, T ), cv = cv(ρ, T ) or e = e(T ), cv = cv(T ), depending on the gas (obeys the ideal
gas law)

• Thermally Perfect Gas e = e(T ), cv = cv(T )

• Calorically Perfect Gas e = e(T ), cv = const

Equations of State

• Ideal Gas
p =

RT

v
= ρRT

• Clausius 1
p =

RT

v − b
where b is a fitting parameter

• Van der Waals
p =

RT

v − b
− a

v2
where a,b are fitting parameters

1.0.4 Specific Heat

Specific heat is the heat needed to raise the temperature of a unit mass of gas by 1 degree. This is
process-dependent, as this occurs at constant pressure or constant volume.

C =
∂Q

∂T
(extensive) c =

∂q

∂T
(intensive)

cv =

(
∂q

∂T

)
v

cp =

(
∂q

∂T

)
p

1.0.5 Adiabatic index

The adiabatic index is the heat capacity ratio

γ =
cp
cv

= γ(ρ, T )

Note that for an ideal gas,

cv =
R

γ − 1
cp =

γR

γ − 1

Kinetic Theory predicts that
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• For monotomic molecules, γ = 5
3

• Diatomic molecules (such as air) γ = 7
5

• Polyatomic molecules γ = 8
6

In general, e = e(ρ, T ) and h = h(ρ, T ) and we require an equation of state. Recall that for a perfect gas,

e(T ) =

∫
cvdT = cvT + e0

If one assumes e0 = 0, then e = cvT and h = cpT so then γ = const.
We can develop a caloric equation of state

e = e(p, v) = cvT =
RT

γ − 1
=

pv

γ − 1
=
p

ρ

1

γ − 1
=⇒ p = (γ − 1)ρe

The precludes the usage of temperature. which is often not necessary in compressible non-reacting flows.

1.1 First Law of Thermodynamics

The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic
systems. The law of conservation of energy states that the total energy of an isolated system is constant;
energy can be transformed from one form to another, but cannot be created or destroyed.

∂W + ∂Q = ∂E + ∂K

in specific form

∂w + ∂q = ∂e+ ∂

(
K

m

)

1.2 Second Law of Thermodynamics

• Entropy measures the disorder of a system

• It also is a measure of the number of possible states a material can have. s is always maximized,
where

s = k ln(Ω)

k is the Boltzmann constant. Ω is a measure of the number of possible states

• Entropy for a system must increase

ds =
dq

T

dq is an incremental amount of heat added reversibly to a system and T is the system temperature.

• s is a state variable which indicates the direction a process can take

• s can be used for borth reversible and irreversible processes. For reversible processes, ds = 0. For
irreversible processes, ds > 0 (Heat flows from hot to cold).

• Entropy increases in thermodynamic systems.

If we equate dq with the first law,
Tds = dq = de+ pdv
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1.2.1 Entropy as a state variable

If we consider a calorically perfect ideal gas,

e = cvT h = cpT

So then
Tds = dq = dh− vdp = cpdT −RT

dp

p

and thus
ds

cv
= γ

dT

T
− (γ − 1)

dp

p

For calorically perfect gas γ = const, so∫ s2

s1

1

cv
ds =

∆s

cv
= γ ln

T

T0
− (γ − 1) ln

p

p0
= ln

(
(T/T0)γ

(p/p0)γ−1

)
So

∆s

cv
= ln

(
(T/T0)γ

(p/p0)γ−1

)
This means we can replace T or p with s as a state variable.

1.3 Reversible and Irreversible Processes

• A reversible process is characterized by ∆s = 0

• An irreversible process is characterized by ∆s > 0

Consider internal energy
de = dq − pdv

Consider an adiabatic process, so that dq = 0.

de =

(
∂e

∂v

)
T

dv +

(
∂e

∂T

)
v

dT = −pdv

So then recall that
(
∂e
∂T

)
v

= cv, so for any gas,

dT

dv
= − 1

cv

((
∂e

∂v

)
T

+ p

)
If we consider a thermally perfect gas, e = e(T ), so

(
∂e
∂v

)
T

= 0.

dT

dv
= − p

cv

Using the ideal gas law,
dT

dv
= −RT

cvv

Recall that cv = R
γ−1

v

T

dT

dv
= −(γ − 1)

Similarly,
ρ

T

dT

dρ
= −γ − 1

γ
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v

p

dp

dv
= −γ

If we further consider a calorically perfect gas, γ = const∫
dv

v
=
−1

γ − 1

∫
dT

T

ln
v

v0
=
−1

γ − 1
ln
T

T0

So then for a calorically perfect ideal gas, the isentropic relations are

v

v0
=

(
T

T0

) −1
γ−1 p

p0
=

(
T

T0

) γ
γ−1 p

p0
=

(
ρ

ρ0

)γ
Recall ∆s

cv
= ln

(
(T/T0)γ

(p/p0)γ−1

)
. If ∆s→ 0, we recover the isentropic relations.

1.3.1 Irreversible Adiabatic Processes

Example : Adiabatic expansion of a gas

We have thermal equilibrium (no Temperature gradients). A pressure gradient created by the removal of
the diaphragm will induce fluid motion.

• A shock wave travels into the low pressure region

• Expansion travels into high pressure region

• Viscous and dissipative forces bring fluid into equilibrium

What is the final equilibrium state of the system

EB − EA = Q+W

For this system , Q = W = 0, so EB = EA.
If we assume the gas is perfect, then E = E(T ) and so EB(TB) = EA(TA) and thus TB = TA = T . What is
the final pressure? (see HW)
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Example: Insulated vessel

If the partition is removed, there is a temperature gradient. This produces an energy gradient (aka current).
∇T = 0 when we reach steady state. First law says

EB − EA = Q+W

We define the system as the entire box. Thus as before Q = W = 0 and EB = EA.

EA = M1e(T1, p) +M2e(T2, p)

but also
EB = (M1 +M2)e(TB , p)

so then
M1e(T1, p) +M2e(T2, p) = (M1 +M2)e(TB , p)

and thus
e(TB , p) =

M1

M1 +M2
e(T1, p) +

M2

M1 +M2
e(T2, p)

If we assume a calorically perfect gas, e = cvT and thus

e(TB , p) = cvBTB =
M1

M1 +M2
cv1T1 +

M2

M1 +M2
cv2T2

If the gases were sufficiently similar (molecular weight, cV , R, etc) in each part of the gas, then

TB =
M1

M1 +M2
T1 +

M2

M1 +M2
T2

See HW1 for when the gases are different.

Example: Flow Throttling Consider an insulated pipe/channel with resistance inside. Assume the kinetic
energy is negligible (the usual incompressible flow assumption) compared to the internal energy

(
1
2u

2 << e
)
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We track the control volume of a fluid from state A to state B. We write the 1st law noting that no heat is
exchanged.

∆E = Q+W = W

The work to push the fluid through the resistance is the flow work. Let blue be volume 1 and let red be
volume 2.

Wflow =

∫
1

pdV −
∫

2

pdV =

∫
1

p1dV −
∫

2

p2dV

We assume that the pressure does not vary spatially

Wflow = p1

∫
1

dV − p2

∫
2

pdV = p1V1 − p2V2

So then the first law is
E2 − E1 = p1V1 − p2V2

or
e2 − e1 = p1v1 − p2v2

Noting that h = e+ pv,
h1 = h2

If heat is added,
h1 = h2 + q

2 Steady One Dimensional Flow

2.1 Continuity Equation (Conservation of Mass)

Consider a steam tube The flow is everywhere tangent to the tube: ~v · ~n = 0. Consider a small fluid volume
over a small distance ∆x.

Inflow = ρuA

Outflow = ρuA+
d

dx
(ρuA) ∆x

The rate of change of the mass inside of the volume will be

d

dt
(ρA∆x)

Net mass flow through the tube is

d

dt
(ρA∆x) = ρuA−

(
ρuA+

d

dx
(ρuA) ∆x

)
We simplify this to the continuity equation

d

dt
(ρA) +

d

dx
(ρuA) = 0

For steady flow, there is no time variation. So the above becomes

d

dx
(ρuA) = 0

or rather
ρuA = const
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2.2 Conservation of Energy

If heat is added along a stream tube,
h2 = h1 + q + w

For compressible flows, we need to consider the kinetic energy. Thus the total enthalpy is

htotal = hT = h+
1

2
u2

So the energy increase from heat added,

h1 +
1

2
u2

1 + q = h2 +
1

2
u2

2

or we could write this as
q = hT2

− hT1

This is true as long as states 1 and 2 are in equilibrium. That is, this is valid even if you have viscous
stresses or heat transfer or other non-equilibrium conditions in between state 1 and 2.
For q = 0,

h1 +
1

2
u2

1 = h2 +
1

2
u2

2

and thus for an adiabatic process,
hT2

= hT1

If we assume that the flow is in equilibrium everywhere then

hT = h+
1

2
u2 = const

along the stream tube. Differentiating,
∂h+ u∂u = 0

If a gas is thermally perfect where h = h(T ),

cp∂T + u∂u = 0

2.3 Stagnation Conditions

Recall hT = h + 1
2u

2. When a flow is slowed down to zero velocity, we recover the stagnation enthalpy
h0 = h. Consider a tube

Fluid will flow if p01
> p02

.

• For natural processes, ds ≥ 0 for flow to be induced

• h02
− h01

= q = heat added
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2.4 Euler’s Equations

• Lagrangian formulations consider the particle reference frame

• Eulerian formulations consider the lab/fixed reference frame

Recall the material derivative in 1D D
Dt = ∂

∂t+u
∂
∂x (valid in the Lagrangian reference frame). The acceleration

can be expressed as

a =
Du

Dt
=
∂u

∂t
+ u

∂u

∂x

In this case, time derivatives are known as the non-stationary terms and the space derivatives are known
as the convective terms. As before, we recall the net force on a particle is

F = pA−
(
pA+

∂

∂x
(pA∆x)

)
= − ∂

∂x
(pA∆x)

The Body Force acting on any arbitrarily shaped particle

f = −∂p
∂x

f =
F

∆xA

We could also integrate the pressure over the surface

F̄ =

∫
S

pds̄ =

∫
V

∇pdv

For quasi-1D flow we see ∫
S

px̂ · ds̄ =

∫
V

x̂ · ∇pdv =

∫
V

∂p

∂x
dv

So then we can write
F = ma =⇒ f = ρa =⇒ −∂p

∂x
= ρ

Du

Dt

Thus we have
−∂p
∂x

= ρ
∂u

∂t
+ uρ

∂u

∂x
or

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

For steady flow ∂u
∂t = 0, and we can write

∂p = −ρu∂u

In integral form we have Bernoulli’s equation for compressible flow

u2

2
+

∫
∂p

ρ
= const

For incompressible flows, ρ = ρ0 = const. We have Bernoulli’s eqn

1

2
ρ0u

2 + p = const
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2.5 Conservation of Momentum

• Primitive variables are density, pressure, and velocity.

• Conserved Variables are density, total Energy, and momentum

ρA
∂u

∂t
+ ρuA

∂u

∂x
= −A∂p

∂x

Multiply the continuity by u

u
∂u

∂t
(ρA) + u

∂

∂x
(ρuA) = 0

Add these together to get the Momentum Equation for unsteady quasi-1D flow

∂

∂t
(uρA) +

∂

∂x

(
ρu2A

)
= − ∂

∂x
(pA) + p

∂A

∂x

In integral form, (integrate in space)

∂

∂t

∫ b

A

(uρA) dx+
[
ρu2A

]b
a

= [−pA]
b
a +

∫ b

a

p
∂A

∂x
dx

The integral form is valid even when friction, dissipative forces, or irreversible processes are present as
long as they are within the control volume. The fluid must be in equilibrium at the control surfaces A and B.

In 1D flow, A is constant. Thus we have the conservative form

∂

∂t
(uρ) +

∂

∂x

(
ρu2 + p

)
= 0

For steady 1D flow,
ρu2 + p = const

or as Euler’s eqn
dp = −ρudu

This assumes the fluid is in equilibirum everywhere. Or we can state

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

In this case only states 1 and 2 need to be in equilibrium.

2.6 Summary of Governing Equations

ρ1u1A1 = ρ2u2A2

p1A1 + ρ1u
2
1A1 +

∫ 2

1

pdA = p2A2 + ρ2u
2
2A2

h1 +
1

2
u2

1 = h2 +
1

2
u2

2

For 1D,
ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2

h1 +
1

2
u2

1 = h2 +
1

2
u2

2
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3 Isentropic Flow

Consider a adiabatic reversible flow. ds = 0 Thus the differential form of equations are valid everywhere.

d(ρu) = 0

ρudu+ dp = 0

dh+ udu = 0

We then consider the reference frame of a wave moving at speed a, then see that conservation of mass
across the wave gives

ρa = (ρ+ dρ)(a+ da) =⇒ ρda+ adρ+ second order terms = 0 =⇒ a = −ρ∂a
∂ρ

Conservation of momentum gives us

ρa2 + p = (ρ+ ∂ρ)(a+ ∂a)2 + (p+ ∂p) =⇒ 0 = dp+ 2ρa∂a+ a2∂ρ =⇒ ∂a

∂ρ
=

∂p
∂ρ + a2

−2aρ

So then

a = −ρ
∂p
∂ρ + a2

−2aρ
=⇒ a2 =

∂p

∂ρ

Recall we assumed reversible flow with small perturbations, so

a2 =

(
∂p

∂ρ

)
s

For isentropic flow for calorically perfect gas pvγ = const or p = cργ for some c, so(
∂p

∂ρ

)
s

= γcργ−1 =
γp

ρ

Thus for a calorically perfect gas,

a =

√
γp

ρ

If we assume an ideal gas and use the ideal gas law,

a2 = γRT

3.1 Mach Number

The Mach number is a dimensionless speed of the sound

M =
u

a

• Subsonic M < 1

• Sonic M = 1

• Supersonic M > 1

• Hypersonic M < 5
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We have two measures of the relative importance of compressibility of a flow

kinetic energy
internal energy

=
1
2u

2

cvT
=

1
2u

2

RT
γ−1

=
γ(γ − 1)u2

2a2
=
γ(γ − 1)M2

2

OR
kinetic energy

enthalpy
=
u2

2h
=
γ − 1

2
M2

Notice that M2 is involved in both ratios.

Consider the area-volume relations

∂ (ρuA) = 0 =⇒ ∂A

A
+
∂u

u
+
∂ρ

ρ
= 0

Recall Euler’s eqn

dp = −ρu∂u =
∂p

∂ρ
∂ρ = −ρu∂u =⇒ ∂p

∂ρ

∂ρ

ρ
= −u∂u

If we assume isentropic flow,
∂p

∂ρ
= a2 =⇒ a2 ∂ρ

ρ
= −u∂u

We rewrite to get
∂ρ

ρ
=
−u∂u
a2

= −M2 ∂u

u

so then
∂A

A
= (M2 − 1)

∂u

u
This tells us about the velocity change given an area change.

• As M → 0, uA = const and we have the incompressible limit

• For 0 < M < 1, ∂A > 0 yields ∂u < 0. Increase in area leads to a decrease in velocity and vice versa.

• M = 1, ∂A = 0. This implies that we have a maximum or a minimum in the area, ie a convergent-divergent
nozzle.

• M > 1, ∂A > 0 yields ∂u > 0. Increase in area leads to an increase in velocity and vice versa.
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3.2 Mach Flow

Sound speed acts a measure of thermal energy. We can define a location in a flow where M = 1 as the
sonic point

a2

γ − 1
+
u2

2
=

a∗2

γ − 1
+
a∗2

2
=

γ + 1

2(γ − 1)
a∗2

If the flow field is adiabatic (need not be reversible) then a∗ is constant everywhere.

Recall total/stagnation condition from energy conservation

cpT +
u2

2
= cpT0 =⇒ T0

T
= 1 +

u2

2γRT/(γ − 1)
= 1 +

u2

2a2/(γ − 1)
= 1 +

γ − 1

2
M2

3.2.1 Stagnation Relationships

If we desire stagnation relationships for pressure and density, we must assume the flow is adiabatic AND
reversible (isentropic).

ρ0

ρ
=

(
T0

T

) 1
γ−1

=

(
1 +

γ − 1

2
M2

) 1
γ−1

p0

p
=

(
ρ0

ρ

)γ
=

(
T0

T

) γ
γ−1

=

(
1 +

γ − 1

2
M2

) γ
γ−1

These give you the stagnation conditions in isentropic flow. That is, at a stagnation point (zero fluid flow),
the T, ρ, p of a fluid is T0, ρ0, p0

We see now that we are able to relate the stagnation and sonic point conditions

γ + 1

2(γ − 1)
a∗2 =

a2
0

γ − 1

At M = 1
a∗

a0
=
T ∗

T0
=

2

γ + 1
( ratio is constant)

p∗

p0
=

(
2

γ + 1

) γ
γ−1

ρ∗

ρ0
=

(
2

γ + 1

) 1
γ−1

Sometimes it is convenient to define the speed

u

a∗
= M∗ (this is not the Mach number)

So then
a2

γ − 1
+
u2

2
=

γ + 1

2(γ − 1)
(a∗)2

Divide by u
1

γ − 1

(a
u

)2

+
1

2
=

γ + 1

2(γ − 1)

(
a∗

u

)2

So then
M∗ =

γ + 1
2
M2 + γ − 1
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• Note M > 1 ⇐⇒ M∗ > 1

• Note M < 1 ⇐⇒ M∗ < 1

• As M →∞, M∗ → γ+1
γ−1 <∞

3.3 Rocket Nozzle

Assume we have an isentropic flow of a calorically perfect gas.

Pc = 15atm, Tc = 2500K, cp = 4157J/kg/K, Te = 1350K,W = 12kg/kmol (molecular weight). We need to
find the exit pressure, velocity, M.
Since M << 1 in the chamber p0 = pc and T0 = Tc. Now we need γ

R =
Ru
W

=
8314J/kmol/K

12kg/kmol
= 692.8J/kg/K

Also
cv = cp −R = 3464J/kg/K

Thus
γ =

cp
cv

= 1.2

We assume γ is constant under temperature interval and use isentropic flow relations.

3.4 Rayleigh Flow

• 1D flow with heat

• Frictionless flow , ie close to reversible
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How does flow change when heat is added? Sources could be combustion, conduction, heat transfer,
evaporation, or condensation.

d(ρu) = 0

dp+ ρudu = 0

dh+ udu = 0

Use the ideal gas law p = ρRT
dp = RTdρ+ ρRdT

dp

p
=
dρ

ρ
+
dT

T

cpdT + udu = dq

If we have a calorically perfect gas, this becomes

d(cpdT +
1

2
u2) = cpdT0 = dq

Thus change in energy implies change in total energy

ds = cp
dT

T
−Rdp

p

where ds ≥ dq
T . If ∇T is small, we can regard the flow as nearly reversible ds = dq

T .

d(M2) = d

(
u2

γRT

)

dM =
du

a
− M

2

dT

T

dM

M
=
du

u
− dT

2T

Use local stagnation T, p ratios
T0

T
= 1 +

γ − 1

2
M2

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1

15



Combine all of these and use dT0 = dq
cp

.

dM

M
=

(
1 + γM2

) (
1 + γ−1

2 M2
)

2 (1−M2)

dT0

T0

du

u
= −dρ

ρ
=

(
1 + γ−1

2 M2
)

(1−M2)

dT0

T0

Remember dq > 0 ⇐⇒ dT0 > 0 and dq < 0 ⇐⇒ dT0 < 0

∂p0

p0
=
−γ2M2

2

∂T0

T0

∂s

cp
=

(
1 +

γ − 1

2
M2

)
∂T0

T0

3.4.1 Impact on Flows

For subsonic flow, M < 1, so if we have head addition ∂q > 0,

• ∂T0 > 0

• ∂M > 0

• ∂p < 0

• ∂u > 0

• ∂ρ < 0

• ∂p0 < 0

• ∂s > 0

• ∂T > 0 for M2 < 1
γ , ∂T < 0 for M2 > 1

γ

For heat removal ∂q < 0, the inequalities are flipped.

For supersonic flow, M > 1. If we have head addition ∂q > 0,

• ∂T0 > 0

• ∂M < 0

• ∂p > 0

• ∂u < 0

• ∂ρ > 0

• ∂p0 < 0

• ∂s > 0

• ∂T > 0
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For heat removal ∂q < 0, the inequalities are flipped.

• If you are in a subsonic flow, heating will start cooling the flow past the maximum because then the
heat will become kinetic energy instead of thermal energy.

• You cannot heat a gas past M = 1

• Heat drives the flow towards sonic conditions M = 1

• Cooling drives the flow away from sonic conditions

• Mathematically you could transition from M < 1 to M > 1 through heat transfer

• Heating always decreases total pressure

• For 1
γ < M2 < 1, heating decreases the temperature since heat converts to kinetic instead of thermal

energy

We can integrate to obtain relations relative to the sound speed reference state M = 1

p

p∗
=

γ + 1

1 + γM2

ρ

ρ∗
=
v∗

v
=
u∗

u
=

1 + γM2

(1 + γ)M2

T

T ∗
=

(γ + 1)2M2

(1 + γM2)2

p0

p∗0
=

γ + 1

1 + γM2

(
2

γ + 1

(
1 +

γ − 1

2
M2

)) γ
γ−1

T0

T ∗0
=

2(γ + 1)M2

(1 + γM2)2

(
1 +

γ − 1

2
M2

)
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NOTE, ptotal = p0 only at an actual stagnation point. Otherwise p0 is merely a convenient quantity. This is
also true for other stagnation variables.

To find a new state 2 from state 1, with reference state ∗ at M = 1,

4 Friction

Over short distances, flow can be isentropic (reversible) flow. Over long distances, we must consider friction
which gives rise to non-isentropic (irreversible flow).
If a duct has perimeter P and a non-varying cross sectional area A, let τw be the wall shear stress. Then,
conservation of mass tells us

∂(ρuA) = 0 =⇒ ∂(ρu) = 0

Conservation of momentum tells us

∂(ρu2 + pA) = p
∂A

∂x
+ forces =⇒ uA∂(ρu) + ρuA∂u+A∂p = −τwP∂x

By conservation of mass, ∂(ρu) = 0. Now let DH = 4A
P be the hydraulic diameter. So we have

ρu∂u+ ∂p+
4τw
DH

∂x = 0

Thus the fluid momentum is not conserved. Now we consider the conservation of energy,

∂h+ u∂u = 0

Since the flow is irreversible due to shear stresses, we know ∆s > 0.

4.1 Ideal Gas with friction

If we assume an ideal gas, we can dig deeper.

∂p

p
=
∂ρ

ρ
+
∂T

T

∂h = cp∂T , so ∂s = cp
∂T
T −R

∂p
p and so

∂M

M
=
γM2

(
1 + γ−1

2 M2
)

1−M2

(
4τw

ρu2DH
∂x

)
∂u

u
=

γM2

2(1−M2)

(
4τw

ρu2DH
∂x

)
∂T

T
=
−γ(γ − 1)M4

1−M2

(
4τw

ρu2DH
∂x

)
∂p

p
=
−γM2

(
1 + (γ − 1)M2

)
1−M2

(
4τw

ρu2DH
∂x

)
∂ρ

ρ
=
−γM2

1−M2

(
4τw

ρu2DH
∂x

)
∂s

cp
=

(γ − 1)M2

2

(
4τw

ρu2DH
∂x

)
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Recall stagnation pressure as pressure if flow was brought to rest.

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1

We can differentiate and rearrange this

∂p0

p
=
−γM2

2

(
4τw

ρu2DH
∂x

)
You could also show this by

∂s = cp
∂T0

T0
−R∂p0

p0

In an adiabatic flow ∂T0 = 0 since at rest there is no friction. So

∂p0

p0
= −∂s

R
= −cp

R

1− γ
2

M2

(
4τw

ρu2DH
∂x

)
=
−γM2

2

(
4τw

ρu2DH
∂x

)

4.2 Qualitative Results

τw > 0 since it is a drag force.
In a subsonic flow,

• ∂M > 0

• ∂u > 0

• ∂T < 0

• ∂p < 0

• ∂ρ < 0

• ∂s > 0

• ∂T0 = 0

• ∂p0 < 0

In a supersonic flow, some of these terms are flipped.

We normally write shear stress in terms of a friction factor f

• Fanning friction τw = fF
1
2ρu

2 (mostly used for compressible flows)

• D’Arcy Friction τw = fD
1
8ρu

2 ( mostly used for incompressible flows)

• In general f = f(Re, ε
DH

,M). Note that the Mach number effects are usually small in comparison to
the Reynolds number and surface roughness effects. If Re is very large, friction might be insensitive
to ε

DH
.

• Friction drives flow towards M = 1 irreversibly. That means the arrows on the Fanno Curve are only
pointing towards M = 1 and will not point away. We cannot undo the effects of friction.
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4.3 Fanno Flow

Using fanning friction,
4τw

ρu2DH
∂x =

2f

DH
∂x

So then
∂M

M
=
γM2

(
1 + γ−1

2 M2
)

1−M2

2f

DH
∂x

So then ∫ M2

M1

2
1−M2

γM2
(
1 + γ−1

2 M2
) ∂M
M

=
4f

DH

∫ x2

x1

∂x

This gives us
1

γ

(
1

M2
1

− 1

M2
2

)
+
γ + 1

2γ
log

(
M2

1

M2
2

)2
1 + γ−1

2 M2
2

1 + γ−1
2 M2

1

=

∫ x2

x1

4f

DH
∂x

Recall that if T01 = T02

T2

T1
=
T0

T1

T2

T0
=

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

p2

p1
=
M1

M2

(
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

) 1
2

ρ2

ρ1
=
M1

M2

(
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

)− 1
2

p02

p01

=
M1

M2

(
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

)− γ+1
2(γ−1)

We can write these with respect to a common reference condition M = 1. Define a reference length
x = L∗ for M = 1, so then∫ x2

x1

4f

DH
∂x =

4f

DH
L∗f̄ =

1−M2

γM2
+
γ + 1

2γ
log

(
(γ + 1)M2

2 + (γ − 1)M2

)
where M is the mach number at x = 0 and f̄ is the average friction coefficient.
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5 Normal Shocks

Finite disturbances coalesce to form a shock wave. If we consider the adiabatic flow across a sock wave,
mass momentum and energy are conserved.
In 1D, we can consider the states before and after shocks

ρ1u1 = ρ2u2

p1 + ρ1u
2
1 = p2 + ρ2u

2
2

h1 +
1

2
u2

1 = h2 +
1

2
u2

2

5.1 Missing notes

5.2 Stagnation Pressure Decrease Across a Shock Wave

Write p02 = p01 + ∆p01

s2 − s1

R
= − log

p01 + ∆p01

p01

= − log

(
1 +

∆p01

p01

)
= −

(
∆p01

p01

−
(

∆p01

p01

)2

+ ...

)
≈ −∆p01

p01

for a weak shock. That is, the entropy increase is directly proportional to the pressure change. We also
note that

s2 − s1

R
=

2γ

(γ + 1)2

(M2
1 − 1)3

6
≈ −∆p01

p01

This is a very different relationship than for the static pressure difference. This is beneficial for engines
since we can have compression without a loss of stagnation pressure by using a series of weak shocks.

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1
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p02

p01

=
p2

p1

(
1 + γ−1

2 M2
2

1 + γ−1
2 M2

1

) γ
γ−1

We know p2
p1

= f(M1), M2 = M2(M1), so we use this to obtain

p02

p01

=

(
1 +

2γ

γ + 1

(
M2

1 − 1
))− 1

γ−1

(
1 + γ−1

2 M2
2

1 + γ−1
2 M2

1

)− γ
γ−1

or
p02

p01

=

(
1 +

2γ

γ + 1

(
M2

1 − 1
))− 1

γ−1
(

(γ + 1)M2
1

(γ − 1)M2
1 + 2

) γ
γ−1

5.3 Rakine-Hugoniot Relations

We can express jump conditions in terms of a single jump condition , so we can write jump conditions
without knowledge of M1 or u1

ρ2

ρ1
= f

(
p2

p1

)
For continuity,

u2 = u1

(
ρ1

ρ2

)
Sub this into the momentum eqn

p1 + ρ1u
2
1 = p2 + ρ2

(
ρ1u1

ρ2

)2

or
p2 − p1

v2 − v1
= −

(
u1

v1

)2

Similarly

u2
2 =

p2 − P1

ρ2 − ρ1

(
ρ1

ρ2

)
Insert this into the energy equation

e1 +
p1

ρ1
+
u2

1

2
= e2 +

p2

ρ2
+
u2

2

2

so then this simplifies to

e2 − e1 =
p1 + p2

2

(
1

ρ1
− 1

ρ2

)
or

e2 − e1 =
p1 + p2

2
(v1 − v2)

or
h2 − h1 =

v1 + v2

2
(p1 − p2)

Equations are true in general, valid for any e = e(p, v). This allows us to find state 2 from original state 1.
This gives rise to Hugoniot curves
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• Without further constraints one cannot simultaneously raise p and v

p2 − p1

v2 − v1
= −

(
u1

v1

)2

< 0

This relationship has a negative slope

• p2 > p1 from the second law. That is- we would have to violate entropy ii order to create an expansion
shock p2 < p1. These expansion shocks do not occur in nature but they do occur in CFD codes
without entropy fixes.

• The Hugonoit curve represents the locus of all possible states behind normal shocks for some (p, v).
Each point corresponds to different upstream velocities u1. Find a line with slope m at point p1, v1

where

m =
p2 − p1

v2 − v1
= −

(
u1

v1

)2
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The intersection of this line and the Hugonoit curve (besides (p1, v1) indicates the new state.

This works for any equation of state

• If we assume a perfect gas e = cvT and p = ρRT we can write down a closed form solution.

p2

p1
=

γ+1
γ−1

v1
v2
− 1

γ+1
γ−1 −

v1
v2

We can also find T2

T1
= f

(
v1
v2

)
or v2v1 = f

(
p2
p1

)
.

T2

T1
=
p2

p1

γ+1
γ−1 + p2

p1
γ+1
γ−1

p2
p1

+ 1
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u1

u2
=
ρ2

ρ1
=

γ+1
γ−1

p2
p1

+ 1
γ+1
γ−1 + p2

p1

Part II

Wave Motion

6 1D Wave motion

Previously we only looked at stationary shock waves ρ = ρ(x) and T = T (x), and now we can look at
moving shock waves ρ = ρ(t, x) T = T (t, x)

We want to transform to the reference frame of the shock.

• To the right of the shock we have u1 = cs, M1 = cs
a1

• To the left of the shock we have u2 = cs − up,

The Mach number is calculated via the same parameter a used for a standing shock wave.

M2
1 =

γ − 1

2γ
+
γ + 1

2γ

p2

p1
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cs = M1a1 = a1

(
γ − 1

2γ
+
γ + 1

2γ

p2

p1

) 1
2

You can do so similarly with the temperature ratios.

• The pressure, density, and temperature ratios are the same for standing or moving shock waves.

• In the reference frame of the lab, the flow is unsteady

• The flow is steady in the reference frame of the shock

The pressure ratio of a shock wave

up =
a1

γ

(
p2

p1
− 1

)( 2γ
γ+1

p2
p1

+ γ−1
γ+1

) 1
2

6.1 Weak Shock Waves

What happens for a weak shock wave, ∆p
p1

<< 1. If ∆s << 1, we call this a nearly isenropic shock

ρ2

ρ1
=

1 + γ+1
γ−1

p2
p1

γ+1
γ−1 + p2

p1

1 +
∆ρ

ρ1
=

1 +
(

1 + ∆p
p1

)
γ+1
γ−1

γ+1
γ−1 + 1 + ∆p

p1

We expand in terms of ∆p
p1

,
∆ρ

ρ1
=

1

γ

∆p

p1
+ ...

So for a weak shock the ratios above are proportional. We can also relate other quantities for a weak shock:

up = cs

(
1− u2

u1

)
u2

u1
=
ρ1

ρ2
=

1

1 + ∆p
p

up = cs
∆ρ

ρ1

cs = a1

(
γ − 1

2
+
γ + 1

2γ

p2

p1

) 1
2

up
a1

=
1

γ

∆p

p1

∆T

T1
=
γ − 1

γ

∆p

p1

In summary,

• ∆ρ and ∆T are proportional to ∆p

• up is small for weak shocks

• As ∆p→ 0 then cs → a1.

pg 65 in the book has similar relations for strong shock waves.
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6.2 Infinitesimal Waves

• Very small variations in fluid properties

• Perfect gas

• Adiabatic and reversible means isentropic

For isentropic processes, p = p(ρ) and p
ργ = const. Recall the CE equations

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Since
∂p

∂x
=
∂p

∂ρ

∂ρ

∂x
= a2 ∂ρ

∂x

Since a2 = ∂p
∂ρ |s=const. So now we have

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+
a2

ρ

∂ρ

∂x
= 0

For small amplitude disturbances,
p∞ → p∞ + p′

ρ∞ → ρ∞ + ρ′

u = 0→ 0 + u′

a∞ → a∞ + a′

Where ∞ refers to the undisturbed conditions and primed quantities indicate the disturbance sizes. We
substitute these quantities into the above CE eqns and note that ρ∞ is constant

∂ρ′

∂t
+ u′

∂ρ′

∂x
+ (ρ∞ + ρ′)

∂u′

∂x
= 0

(ρ∞ + ρ′)
∂u′

∂t
+ (ρ∞ + ρ′)u′

∂u′

∂x
+ (a∞ + a′)2 ∂ρ

′

∂x
= 0

Now we assume the disturbances are small. That is, we drop the second order terms

∂ρ′

∂t
+ ρ∞

∂u′

∂x
= 0

ρ∞
∂u′

∂t
+ a2
∞
∂ρ′

∂x
= 0

These are the linearized acoustic equations. If we differentiate, we can convert

∂2ρ′

∂t2
+ ρ∞

∂2u′

∂x∂t
= 0

ρ∞
∂2u′

∂t∂x
+ a2
∞
∂2ρ′

∂2x
= 0
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into
∂2ρ′

∂t2
− a2
∞
∂2ρ′

∂2x
= 0

∂2u′

∂t2
− a2
∞
∂2u′

∂2x
= 0

Thus we have the solution
ρ′(t, x) = F1(x− a∞t) +G1(x+ a∞t)

u′(t, x) = F2(x− a∞t) +G2(x+ a∞t)

At t = 0,
ρ′(0, x) = F1(x) +G1(x)

Each shape propagates at respective characteristic speeds

6.3 Several days of notes during CSE

7 Nonlinear Waves, Finite Disturbances

The nature of the propagation of finite disturbances, etc, depends on the form of the modeling equation.

7.1 Burger’s Eqn

∂tu+ u∂xu = 0

Based on the wave eqn, we expect
u(t, x) = f(x− u(t, x)t)

So this is an implicit solution depending on the form of the function f(z).

7.2 Nonlinear advection

∂tu+ (a∞ + u)∂xu = 0

If we let a = a(u) = a∞ + u, then

u(t, x) = f(x− at) = f(x− (a∞ + u)t)

So if u(0, x) = sin(x), then
u(t, x) = sin(x− (a∞ + u)t)

We notice the characteristics have the property

dx

dt
= a∞ + u(t, x)

so then at t = 0 for the above IC,
dx

dt
= a∞ + sin(x)
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8 Physical Waves

ρ′(x, t) = F (x− a∞t) +G(x+ a∞t).

u′(x, t) = f(x− a∞t) + g(x+ a∞t).

We focus on a single plane wave propagating in the positive x directions. G = g = 0.

∂tρ
′ = ∂tF = −a∞F ′(x− a∞t)

∂xρ
′ = ∂xF = F ′(x− a∞t)

So
∂tρ
′ + a∞∂xρ

′ = 0

but similarly
∂tu
′ + a∞∂xu

′ = 0

So u′ = const and ρ′ = const along dx
dt = a∞

• Condensation Waves: ρ′ is positive and u′ could be positive or negative depending on the direction of
motion. For a left traveling wave, ρ′ > 0 and u′ < 0. For a right traveling wave, ρ′ > 0 and u′ > 0

• Rarefactions: Induce fluid motion in opposite direction of wave (expand the gas). For a left traveling
wave, ρ′ < 0 and u′ > 0. For a right traveling wave, ρ′ < 0 and u′ < 0

8.1 Finite Disturbance Waves

Consider the passage of a plane wave through a quiescent gas. We no longer assume small amplitude
disturbances. This means nonlinear waves are involved which can alter the sound speed of the medium.

• We assume p = p(ρ) and u = u(ρ) from the Rankine Hugoniot conditions.

• Recall for isentropic waves pressure was proportional to ργ .

ρ2

ρ1
=
u1

u2
=

1 + γ+1
γ−1

p2
p1

γ+1
γ−1 + p2

p1

If we plot log ρ2
ρ1

vs log p2
p1

, we have a linear relationship. However, the Rankine Hugoniot conditions
deviate from this curve for large pressure differences

We must use the fully nonlinear continuity and momentum equations

∂ρ

∂t
+

∂

∂x
(ρu) = 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Since u = u(ρ) and p = p(ρ) (velocity and pressure depend only on density)

∂ρ

∂t
=
∂ρ

∂u

∂u

∂t

∂ρ

∂x
=
∂ρ

∂u

∂u

∂x

∂p

∂x
=
∂p

∂ρ

∂ρ

∂u

∂u

∂x

We substitute this into the continuity equations

∂ρ

∂u

∂u

∂t
+ u

∂ρ

∂u

∂u

∂x
+ ρ

∂u

∂x
= 0
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∂ρ

∂u

(
∂u

∂t
+ u

∂u

∂x

)
+ ρ

∂u

∂x
= 0

We do the same for the momentum equation

∂u

∂t
+ u

∂u

∂x
=
−1

ρ

∂p

∂ρ

∂ρ

∂u

∂u

∂x

Then we notice we can use this in the continuity equation to obtain

∂ρ

∂u

(
−1

ρ

∂p

∂ρ

∂ρ

∂u

∂u

∂x

)
+ ρ

∂u

∂x
= 0

(
∂ρ

∂u

)2
1

ρ2

∂p

∂ρ

∂u

∂x
=
∂u

∂x

Which gives us

∂u = ±

√
∂p

∂ρ

∂ρ

ρ

Recall a2 = ∂p
∂ρ at constant entropy. However, since for these disturbances pressure is a function of density

only, this is a proper derivative a2 = dp
dρ . This a is now a local quantity and this relationship holds in isentropic

regimes (away from shocks).
du

a
= ±dρ

ρ

This is analogous to the equations for infinitesimal disturbances.

• The positive sign is for a forward traveling wave, the negative sign is for a backward traveling wave.

• The flow velocity follows a compression wave

• The flow velocity moves away from an expansion/rarefraction wave

Now consider only the forward traveling wave

du

a
=
dρ

ρ

Combine this with the momentum equation

∂u

∂t
+ u

∂u

∂x
=
−1

ρ
a2 ρ

a

∂u

∂x
= −a∂u

∂x

or in terms of the nonlinear scalar advection equation

∂u

∂t
+ (u+ a)

∂u

∂x
= 0

with solution
u(x, t) = f(x− (u(x, t) + a)t)

Note that a is the local sound speed which varies inside the wave. By definition a is the sound speed for
isentropic infinitesimal disturbances, so we use

p

ργ
=
p∞
ργ∞

=⇒ dp

dρ
=
p∞
ργ∞

γργ−1
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So then

a =

√
p∞
ργ∞

γργ−1 =

√
γp∞
ρ∞

ργ−1

ργ−1
∞

= a∞

(
ρ

ρ∞

) γ−1
2

This is for a forward traveling wave. Thus

du = a
dρ

ρ
=

a∞

ρ
γ−1
2

ρ
γ−3
2 dρ

Integrate

u =
a∞

ρ
γ−1
2

ρ
γ−1
2

γ−1
2

+ const

Then we use u = 0 =⇒ ρ = ρ∞, which is the same as u′ = ρ′ = 0. Thus

const =
−2a∞
γ − 1

So then
u =

2

γ − 1
(a− a∞)

a = a∞ +
γ − 1

2
u

• a > a∞ for u > 0 and vice versa

• a− a∞ is proportional to u

• The disturbance travels at speed c = u+ a = a∞ + u+ γ−1
2 u = a∞ + γ+1

2 u

• The wave travels at a speed greater than the sound speed for u > 0 and slower when u < 0.

• The wave is no longer travels at a speed that is independent of u. It is a function of the local fluid
velocity.

• For infinitesimal waves
u′

a∞
=

ρ′

ρ∞
<< 1, u→ u′

In the limit u′

a∞
<< 1, we recover c → a∞. Since c = c(u),waves don’t always propagate at a steady

speed.

• Characteristics converge to form a shock wave

• Irreversible process since information that propagates into the sock is destroyed (uniqueness is lose)

• Shock waves are called the black hole of characteristics since they absorb all signals and information

• The entropy is discontinuous at shocks

• If characteristics do not converge flow can be reverse without loss of information

31



8.2 Steady Shock Wave Propagation

• Finite disturbances show propagation velocity increases with wave amplitude

c = u+ a = a∞ +
γ + 1

2
u

How does a steady shock exist? The shock separates two steady states or constant states. Consider
the Riemann problem with u = up (piston velocity) for x < 1 and u = 0 for x > 1. Thus for x < 1
the characteristics have the form x = (a∞ + γ+1

2 up)t + x0. For x > 1 x = a∞t + x0. At x = 1,
x = cst + x0 where cs is the sound speed. Thus on either side we have parallel characteristics, but
since a∞+ γ+1

2 up > cs > a∞, they converge. This process sustains a shack wave at a constant speed
of propagation.

9 Simple Centered Expansion Waves

What if instead of pushing with a piston we pull? The fluid must fill the void.

• We assume the flow is isentropic since this process is reversible and we have added no heat.

We assume the piston moves instantaneously. This gives rise to a centered expansion fan. Centered refers
to the fact that the fan arises from a single point.

• The piston characteristic: xp = − |up| t

• The fan head characteristic: x4 = c4t =
(
a∞ + γ+1

2 u
)
t with a∞ = a4 and u = u4 = 0, so then

x4 = a4t

• The fan tail characteristic: x3 = c3t =
(
a∞ + γ+1

2 u
)
t with a∞ = a4 and u = u3 = − |up| so

x3 =

(
a4 −

γ + 1

2
|up|

)
t

If c = dx
dt = const along a characteristic (the characteristics are straight lines), we have a simple

centered fan. We integrate to obtain c = x
t since x0 = t0 = 0. So then for the tail of our expansion,

c3 = a4 −
γ + 1

2
|up| = const

– The velocity inside of region 3 downstream of the tail is constant u3 = − |up|.
– Velocity upstream of expansion in region 4 is constant u4 = 0

– What about inside the expansion?

c =
x

t
= a4 +

γ + 1

2
u =⇒ u =

2

γ + 1

(x
t
− a4

)
– Velocity varies linearly with position

– The slope at a fixed point is inversely proportional to time.

We want to relate u to the other flow variables. Recall

c =

(
a4 +

γ + 1

2
u

)
t
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which was derived from forward propagating finite disturbance.

du = a
dρ

ρ
or for backwards moving waves du = −adρ

ρ

Here a∞ = a4

1 =
a

a4
− γ − 1

2

u

a4
=⇒ a

a4
= 1 +

γ − 1

2

u

a4
=⇒ a < a4

Use a = a
√
γRT ,

T

T4
=

(
1 +

γ − 1

2

u

a4

)2

• Expansion waves are adiabatic

• An expansion fan is a reversible adiabatic (isentropic) process since the characteristic diverge

• We can use the isentropic relations

p

p4
=

(
ρ

ρ4

)γ
=

(
T

T4

) γ
γ−1

p

p4
=

(
1 +

γ − 1

2

u

a4

) 2γ
γ−1

=⇒ p < p4

ρ

ρ4
=

(
1 +

γ − 1

2

u

a4

) 2
γ−1

=⇒ ρ < ρ4

10 Entropy

We can include energy to obtain a third characteristic

c0 = u

This is sometimes called an entropy wave

∂s

∂t
+ u

∂s

∂x
= 0

• There can be an entropy discontinuity that advects at local fluid velocity.

• Contact waves/ discontinuities occur when speed u and pressure are continuous while other properties
jump.

• Across a contact all characteristics are parallel

ρ(x, t) = f(x− ut)

Velocity u is equal on either side of the wave. Behaves like a linear advection equation.

• If we apply conservation of mass in the wave reference frame, we have zero mass flux across the
wave.

If p = const we can use the ideal gas law

ρ3R3T3 = ρ2R2T2

We have different ways to have a discontinuity
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• Different gases same temperature: ρ3R3 = ρ2R2, Ri = R
wi

• Same gases different temperature: ρ3T3 = ρ2T2

• Different gases different temperature

Note:

• Entropy may change across a contact

• Contact discontinuities do not create entropy but they may move a jump in the entropy

• Second law of thermodynamics says entropy must increase following a fluid particle. There is no fluid
that crosses a contact, thus there is no violation of the second law.

• Contacts are shear layers or slip lines in multiple dimensions.

11 Riemann Problems

Imagine state 1 and state 4 separated by a diaphragm which vanishes at t = 0. Before this u1 = u4 = 0,
and p1 < p4. This creates a shock, a contact, and an expansion wave.

• Between 1 and 2 we have a shock propagating at velocity −cs

• between 2 and 3 we have a contact

• Between 3 and 4 we have an Expansion fan, the head of which is propagating at velocity a4

Given p4
p1

, we can find the solution inside the four regions using relations for shocks, contacts, and expansions.
That is, we know

(ρ, u, p)|region 1 = (ρ1, 0, p1)

(ρ, u, p)|region 4 = (ρ4, 0, p4)

Across the shock,

u2 = up =
a1

γ

(
p2

p1
− 1

)( 2γ
γ+1

p2
p1

+ γ−1
γ+1

) 1
2

=
a1

γ

(
p2

p1
− 1

)(
2γ

(γ + 1)p2p1 + γ − 1

) 1
2

(1)

Across the expansion wave,
p3

p4
=

(
1− γ − 1

2

u3

a4

) 2γ
γ−1

u3 =
2a4

γ − 1

(
1−

(
p3

p4

) γ−1
2γ

)
(2)

Across the contact
u2 = u3

p2 = p3

Which means we can equate 1 and 2.

a1

γ

(
p2

p1
− 1

)(
2γ

(γ + 1)p2p1 + γ − 1

) 1
2

=
2a4

γ − 1

(
1−

(
p3

p4

) γ−1
2γ

)
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Recall that p1 = constp4 and that p3p4 = p2
p4

= p2
p1

p1
p4

p4

p1
=
p2

p1

1− γ − 1

2

a1

a4

(
p2

p1
− 1

)√√√√ 2
γ

(γ + 1)p2p1 + γ − 1


−2γ
γ−1

We know p4
p1

and a1
a4

. The last remaining unknown is p2
p1

. Once this is obtained (numerically), we know the
shock jump conditions. We can find p3 then up = u2 = u3. Now the only unknown is the velocity inside the
expansion

c =
x

t
= a4 +

γ + 1

2
u

or
u =

2

γ + 1

(x
t
− a4

)
So then

u(t, x) =


0 x < −cst
− |up| −cst < x < − |up| t
?? ??

0 a4t < x

Insert a picture of compressible Euler shock tube experiments
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12 Wave Reflections

There are two types of reflections

• Reflections off of a wall, BC u = 0. The shock wave will reflect off the wall.

• or reflections off the opening boundary (like a tube open at one end.

Part III

2D Flow

13 2D Supersonic Flow

• Oblique shocks

• Flow over wedges

• Mach lines

• Weak Oblique shocks

• Supersonic compression

• Supersonic expansions

• Reflected shocks

• Detached shocks

13.1 Oblique Shocks

See drawing in notes. We decompose the incoming velocity into each dimension then apply the compressible
euler equations.
Across the shock u2 < u1 but v1 = v2 = v. The flow turns towards the shock.
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