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Part |
Finite Element Methods

Notation. Let the default norm be the L?(a,b) norm. We define the weighted a-norm and the Energy norm
as such.

el = 1o

b
191, = Vet ey = | alo)w()?ds
el = I

1 Introduction

Consider the BVP

{ (a(2)e) = f(x) =€ (0,1)

70 < Gmin < < Omaz < ) BVP1
w(0) = u(1) = 0 Gmin < o(z) < o (BVP)

Notice BVP1 is self adjoint with 0 ¢ o,,(L). This has a solution as long as f is continuous and a € C*.
We reformulate this as the variational problem

1 1
/ av'v'dr = / fodz,v € Hp (VAR1)
0 0

which has a unique solution.

2 cG(1): Galerkin FEM

The continous Glaerkin Method of Order 1 considers the variational problem and chooses hat functions as
the trial and test functions .

2.1 Neumann BCs
Consider

L0 < amin < a(2) < amas < 00,  (BVPN)

{— (a(2)u) = f(=) € (0,1)
w(0) =0;a(l)u'(1) = g1

We choose V = {v € Hj,v(0) = 0} so the variational problem is

1 1
/ av'v'dr — giv(1) = / fvdx
0 0

We then use the approximate test fuction space

Vi = {1, s ars drrs1}

M+1
Where ¢ar41 is an added half-hat function. Let U(z) = ) &;¢,(x) so our variational problem becomes
j=1

M+1 1

Z fi/o a(x)d;(x)¢g(x)dr — grv(1) :/o foidz + g19i(1)
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3 Ritz FEM

4 New Notes

" Note that for ¢ st —(at')’ = &, $(0) = ¥(1) = 0,

190, < o

S, = max ———2
€40

So
la"| < |IfIl +lla’®" Il < NFI + [la'llo Ml

4.1 An a posteriori error estimate
Lete =u — U, then

1 1 1 1 1
e|% = aeedr = ae'u — ae'U'dx = edxr — ae'U'dx
E
0 0 0 0 0

Subtract from this

1 1
/ fodx — / aU’v'dr =0
0 0

1 1
el = [ se=Pacdo— [ at'(e— Peyas
0

So we have

M1
fZ/ fle — Ppe) —alU’'(e — Ppe)’) dx
M+1 M+1
:Z/ (f + (aU") )(e—Pe)dmZ[ (e—Pe)]
T =1
Since (e — Pue)|,, =0forall j =0,1,...,.M +1
M+1 L
ells = 3 [ oy e-rede= [ R0 P
Tj 0

where R(U) = f + (aU')".
Cauchy,:
H HE < HhR Ha*th 6 - Pne)Hn

Note that ||~ (e — P,e)||, < C|E]l,.

-1

Theorem: Error Estimate There exists a constant C' depending only on a(z) such that the cG(1) FEM

approximation U satisfies
lu=Ullg = l(u=U)l, < Ca)[|ARU)]| ;-
Adaptive Mesh Refinement Steps

1. Compute the approximate FEM solution on a uniform coarse mesh.
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2. Calculate the error on each element K;

E12 = (z; — xj-1)° /le @RQ(UW%

move onto next element.

2 €2
It Ef < =am:
2
€

If Ef > EOET) subdivide the element into 2 or more elements, then move onto the next element.
3. Recalculate solution on the new mesh.
4. Repeat 2-3 until no subdivision is required.

Note that the constant c is unknown. The more accurately we know this ¢, the better our estimate will be and
therefore the more efficient our code will be. Estimates for ¢ can be given by calibration based on known
solutions.

41.1 L, norm a-posteriori error estimate

lu— Ul < CsCr||R*RU)||

where
A1 (¢ — Puo)|| < Crlle”||
and 10"
Co=max—r—,  —(a))'=¢

Proof. We have the dual problem —(ay)’) = e, ¢(0) = ¢(1) = 0, so
1 1
2 _ N Joe — . N/
el == [ etavyde = [ (w=U)(ae'yda

1

~ [ atu=vyods ~ ((u=V)a0;
1 1

:/0 au(;ﬁdm—/o aU' ¢'dx
1 1 1 1

:/0 fqi)da:—/o aU'¢'dx — (/0 fvda:—/(; aUvdm) ,0v=Pyo

-/ 1 (r60-Puor - | U (6 P ) do

M+1

-/ Y RW)(6 - Pad)ds
i=0 i1
1
_ /0 R(U)(p — Podp)da
<|w* RO |77 = Pug)|
<[[R*R(U)| C1ll¢" |
<|[B*RU)|| C:Cs]e|
lel <[[R*RW)|| C:1Cs
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Using this, we modify step 2 of the adaptive mesh refinement

E} = (z; —xj_1)" /Zj R*(U())da

i—

and let ¢ = C;C, in step 2.

5 ¢G(2) Method
Consider our favorite BVP/VAR
1 1
—(au") = f,u(0) =u(l) =0 <= / av'v'dr = / fode, Vv eV =H}
0 0

Now we use the approximate V;? :
Vi ={veV vl =a;+bjz+cz’}
We seek a basis {¢,} such that V;? = span {¢, }.

J

Given a mesh T}, = {h;},,,, so that z; = zo + ) h;, we introduce a submesh that divides the mesh 7},
i=1

into subintervals of size % We then consider the Lagrange polynomials

(1,0,0) = pl(xj_l) = 1,p1($j_%)1 zp(xj) =0

2

(07170) = pZ(I]—l) = 17p2(xj_%)1 ZPQ(IJ) =0
(0507 1) = p3($]) = 1,p3(.’17 =0

)1 = p3(x;_1)

_1
2
2Az—x;y 1)(@—Tis1)

(Tip1—xi)?
¢i(x) = 2(z—=z,_1)(z—mi-1)
( ) (wifzwi—l)Q

Ty <o < Ty

Ti—1 <x <@

0 otherwise
Moo)wowy) g ) <z <
b 1(z)={ @m0 .
3 0 otherwise

‘/vh2 = Span {¢%7¢17 ¢%a¢27 seey ¢M7 ¢]\/I+%}
2M+1

U)= Y &6;()
j=1
So for the same mesh T}, the cG(2) has roughly twice the amount of unknowns as cG(1) method.

For any function v € V,

¢G(2) variational problem

2M+1 1

; 5%/0 a(r)e (x)%(w)dx:/o f(2)¢; ()dx

ol

fori=1,2,...,2M + 1.
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5.0.2 Example
Considera=1andh; =h,j=1,..,.M+ 1.
Stiffness matrix
Ifiisodd,:=1,3,...,2M + 1,
o= [F @ = 20
Y e, e 3h
2
dirizaga= [ b ()¢ (@) = =
1—1,2 T,0— . % zT 3h
2
Ifieven,i=24,..,2M,
wi= [T e =
(. oy % 3h,
2
Ilgl / / -3
ai-1; = Qj;-1= . ¢%(I)¢1;1 (z)dx = £y
2
T% / / 1
i—2,i = Qiji—2 = iz (@)dr =
teri= = [ @@=
2
You can check this because summing the rows gives a zero vector.
2M+1 2M+1 2M
f=Puf=) flapey)= Y fley@)+ Y flay)oy@)
j=1 j=1,0dd Jj=2,even

Odd pieces: For odd 7,

2M+1 Tit1 T 41
fim Y fag) [ T oy@y @ =faa) [ onia)sy w)is

j=1,0dd i1

s

o)
h
fi= 3 (Flags) +8f(zy) + flasp))
Even pieces: For even i,

fi = e (Faga) + 21 (rass) + 87(ry) + 2 (wegs) — Flarag2))

This produces a matrix problem Au = f, where A is SPD.

5.0.3 Error Analysis

Energy norm error
lu=Ullg < llu=vlg, ¥veVy

Take v = P,u, then
lu—Ullg < llu— Prull g < ch®||u”||

L norm error:
lu = Ull 2 < ch®[lu”|
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6 Beam Equation

(BEAM BVP)

{u(4) =f 0<x<1
u(0) =u(l) =4 (0) =u/(1) =0

u and u’ are specified at the boundary, thus are essential boundary conditions. v and v’ will be strongly
enforce. So let
V={veH?:v(0)=0v(l) =v'(0) =2'(1) =0}

So we have our Variational Problem

1 1 L !
/ ’UUH//de _ / ’de.’L' — / u”v//dx = / fUdl’(BEAM VAR)
0 0 0 0

Recasting this as an energy minimization, we define the functional

Flw] = ;/Ol(w”)zdm — /01 Jwdx

So we seek v € V such that

Flul < Fv], vV v € V(BEAM MIN)
Assume w =u-+uv,v V.
1 1 1 1 1 1
Flw]=Flu+tv]=Flu]+3 / (v")*dx + / u"v" dx — / frde = Flu] + 5 / (v")?dx > F [u]
0 0 0 0

So minimum energy is achieved with fol(v”)de = 0 which with the boundary conditions implies v(z) = 0.

6.1 cG(3) Method

The regularity condition of our V' for our Beam Variational problem is continuously differentiable functions.
Thus we need cubics in order to match the values and derivatives of neighboring solutions (4 conditions
implies 4 coefficients).

Vi ={veV vy =a;+bjx+cjz*+d;z*}

So our first basis function is (recall h; = z; — x;_1)

3h;2(gc —xj1)? — 2h;3(x —zj1)%  zjo <z <,

1 — _
¢>§ )(x) = 3hj+21(x —zjp1) + 2h]-f:1(x —z;1)? xj <z <win
0 otherwise
And we note
(1) 6h;2(l’ — l‘j_l) — 6h;3(l‘ — xj_l)Q J,‘j_l S xr S l‘j
(6,7 () = 6h; 2 (@ —xj1) + 6h 70 (2 — 2j11)° @y <z <ajp
0 otherwise
Note that

o o\M(x) e 0,1, ¢V (x) ¢ C2[0,1]

o 0\ () = djp, (8) (ax) = 0
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Our second basis function is

—hil(x —zj_1)?+ h;z(x —xj1)? wjo <z <z

6 (@) = hg#( —zj1) +hi (@ —apn)? @ <e <o
0 otherwise
And we note
—th_l(.ﬁ —Xj— 1) + 3h_2($ — x.j—1)2 ri1 <z <z
(05 (2)) = § 20y (& = wya0) + 302 (@ = 2j00)? @5 S @ <y
0 otherwise
Note that

o 0P (x) e C'[0,1], ¢'P(x) ¢ C?[0,1]

o 6 (z1) =0, (617 (1) = I

So we have " W e 2
V,f’:span{¢1 S aees M)7 5)7...7 EV[}

So we express our trial function
M M
1 2
U=3¢o @)+ Y nof (@)
j=1 j=1
Note

o U(xg) =&, U'(xk) =
So forany v e V,

M M
Pro =3 u(a)e) ) () + v/ ()87 ()
Jj=1 =1
Plugging this into our variational problem,
i+l 1+1
Z fj/ ¢(l))//(¢(1) "y + Z o / d)(l) //(¢(2)),, — RHS
j=i—1 j=i1 zi

This results in a matrix equation

re
7@

n

=]

*

|
I/~
Q b
@ Q
——
N
[y
——
/N

A is tridiagonal, symmetric:

1 2 -1
_ -1 2
A B 73 . -
- - M x M
B is tridiagonal, symmetric:
) 4 1
g2 1 4
Ry . .
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C is tridiagonal, antisymmetric defined by ¢;; = fx"jll (¢>§1))”(¢§2))”daz so it looks like

Zq

6 -1 0 1
C:ﬁ
M x M

So Soarx2n IS Symmetric, positive definite thus invertible. For the right hand side of the equation, we project
f onto our test functions

M+1 M+1
Pof =3 fla)o @)+ Y Fz)6 (x)
j=0 J=0
So then the RHS of the equation
i1 Tit1 Ti41
RHS = 3 (f(a:k) / oo\ da + f' () / ¢§-”¢§f>dw>
k=i—1 Ti—1 Ti—1

Using quadrature,

2
O = % (9 (@i_1) + 52f (z:) + 9f (zi41)) + % (f'(ziz1) = f'(ig1))
2 3
12 = 1432}2) (f(@is1) = ['(@iz1)) = 4]%0 (B (wi—1) = 8f' (%) + 3f (zi41))

6.1.1 Error Analysis

We know our interpolation error goes as

lu = Phull 291y < Clh4Hu(4) HL2
1w = Prw)[| 20,1y < CQhS“u(4)"L2

||(U _ Phu)”HL2(O,1) < Cgh2Hu(4)HL2

A priori error estimate (Energy Norm) Exact variational problem is finding v € V' such that

1 1
/ u’v"dx = / fvdzVveV
0 0

our approximate problem is finding U” € V2
1 1
/ U'v"dx = / fvdzVveV
0 0
Subtracting, we get the Galerkin orthogonality condition
1 b
/ (u—U)"v"de =0Yv eV
0

So then we see . )
lu—UJ% = / (u—U)")2dz = / (w—UY (u—v+v—U)'ds
0 0
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Galerkin orthogonality tells us that this becomes

1 1 1
u—U|% = w—U)"(u—v)"dx + u—U)"(v-0U)"de= [ (u—0U)"(u—v)"decVveV
E o 0 0

So then
2
lu=Ullg <llu=Ullgllu—vllg = llu=Ullg <llu—vllgVVy

So U is the optimal solution in V;? according to the energy norm. Take v = Pju.

lu=Ullp < lu = Prly = Il = Pa)llz < cx?||u®]

L2

L?-norm error estimate Since Lu = u¥) with u(0) = u(1) = «/(0) = «/(1) = 0 is self adjoint, we consider
the dual problem.

oW =e,¢(1) = ¢(0) = ¢'(1) = ¢/(0)

1

1 1 1
||6H2L2 :/0 ezdx:/ e¢(4)dx:/0 e’ ”dz+[e¢"’—e’q§"]é = HeHi2 :/O e'"¢"dx
0

Using Galerkin Orthogonality, we see that since P,¢ € V}2,
1 1
/ e"(Pth)Ndl’ =0 — HeHQL2 :/ e”(éb o Ph¢)"dx
0 0

el < "6 = Pa) o < ch | cn2[6®] | = chtu®]] et
SO

4|, ()
lelle < On[u®]]

In practice, we see
& —u(ay)| =O(hY),  |n; —u'(x;)] = O(h*)

7 Abstract Formulation of Conforming Methods for Elliptic Equa-
tions

Consider —(au') = f,z € (0,1), u(0) = u(1) = 0. The variational problem takes v € H} and seeks a
solution to

1 1
B(u,v) = L(v), B(u,v) = / au'v'dz (bilinear form) , L(v) = / (linear functional)
0 0

which was equivalent to the energy minimization problem of finding v € H} such that F(u) < F(v) for all
v € H} where the energy functional is defined as

Fw) = %B(v, v) — L(v) (energy functional)

So in general, consider the domain  c R,
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7.1 Lax-Milgram Theorem

missing notes Sept 25
So, given a bounded/continuous functional L(-) and a symmetric, bounded, coercive (elliptic?) bilinear
form B(u,v),

|L(v)| < L] B(u,v) = B(v,u)  B(u,v) < Cllul [v]] B(v,v) = ¢|v|”

Q|

The variational problem has a unique solution « € V with the property |ju| <

7.2 Abstract Conforming Method

Replace the space V' by a finite dimensional subspace V;, C V. The general Finite Element Method is to
find a up, € V}, such that B(up,v) = L(v) for all v € V},.

The Lax Milgram theorem tells us there exists a unique solution u;, € Vj, such that [ju|,, < %

M

Let {phi,»}fil be a basis for V}, where dim(V},) = M. Letu, = > &¢; , and thenletv =¢; forj =1,..., M,
=1

S0

M
> B(i, 6)% = L(¢))
1=1
for 7 =1,..., M. Converting this to a linear algebra problem,
A€ =f,a;; = B(¢1, ;)
We see that A is symmetric and positive definite.
o Note that this is independent of geometry and dimension!

7.21 Error
7.2.2 Cea’s Lemma

Let V be a Hilbert space and let V}, be a finite dimensional subspace. Given a bilinear form B and a linear
functional L satisfying the assumptions of Lax-Milgram, then let u be the solution to the variational probem
and let uj, be the solution to the FEM problem, then

hu = wnlly < Zllu—vlly Vo e Vi

=
Thus, uy, is the best possible approximation to « for all functions in Vj, with respect to ||-||,.
Proof. Subtracing the FEM problem from the variational problem,
B(u,v) — B(up,v) =0Vv €V, = B(u—up,v)=0Yv eV,

Thus we have Galerkin orthogonality with respect to the inner product B(-, -).

B(u—up,u—up) = Blu—up,u—v+v—up) =Blu—up,u—v)Vovel,
Since B(u — up,v — up) = 0 by Galerkin orthogonality.
Using the assumed properties of this bilinear form,

B(u — up,u —v) < Cllu —up||y ||u— v,
and ,
cllu —unlly < Cllu—unlly lu—wvlly,

S0

C
lu=unlly < —llu=vly

10
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Note: Errorin ||-||,, Letv = Pyu. Therefore
C
lu = unlly < Fllu = Prully,

where ||u — Pjul|,, is the interpolation error measured in ||-||,,. So convergence occurs if [|ju — Pyul|;, — 0
ash — 0, M — oo.

Example Given the problem
—u" = f, w(0) =u(1) =0

Let I = (0,1),then V = H}(I), B(u,v) = (u',v, =) fol uw'v'dx, L(v) = (f,v). B(-,-) is clearly symmetric.
|B(u,v)| < HUIHH([)HU/HL?(I) < HUIHH(}(1)||U/||H(§(1)

So B is bounded with C' = 1. Now using Poincare

2 1 1 2
B(v,v) = Wl7e = 5 (Iollzacn + 101 ar) = 5100
So B is coercive (V — ellpitic) with ¢ = % f is continuous since

L)l = [, 0) < I lle [0l g ynorm [ L2 D] fllv]ly

Using previous results, a cG(1) method has

lu—unlly < 2|lu—Puull < erhllu”|p2
Whereas a cG(2) method has

lu = unlly < c2h?[[w” || Ly

2D Example Consider the Poisson equation
“Au=—(Ugy+uy,)=frceQCR? u=0,2 €00

Assume f € L?(f2). The variational problem is

f/ vAud:c:/fvdx
Q Q
Using Green'’s identities, this becomes

/V’U'VUdI*/ UVu~des:/fvdz
Q o Q

If we take v = 0 on 9012, then this is

Vv - Vudr = / fudz
Q Q

Thus we have our space V = H} (). So our variational problem is to find u € V st B(u,v) = L(v) for all

v € V where
B(u,v) = // Vu - Vodzdy, L(v) = // fodxdy
Q Q

and the energy is defined as F(w) = 1 B(w,w) — L(w). We note B(-,-) is continuous with C' = 1 since

[B(u, v)| < [|Vull 2 [Vol[ 2 < [Vl g2 [Voll g

and it is coercive (V — elliptic) since

1 _
B(v,0) = [Vol}a = 5 (€72 ol + V013 ) =

11
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7.3 Non-Conforming Methods

The two introduction probems are known as conforming methods. This is any method where we replace
the space V by a finite dimensional subspace V;, C V. Non-conforming methods have functions outside the
space V:V, ¢ V.

Oct 2 Notes

D= fu(0)=u(l) = (0) =u'(1) = 0,1 = (0,1)

where f € L%(I). So our test function space is V = #2(I) and our problem is

B(u,v) = (u", f") = {f,v) = L(v)

B is bounded with C = 1, symmetric, and coercivity with ¢ = % is proven via Poincare.
Cea’s lemma says for cG(3), we have the error estimate

llu— Uh||H2(1) < ch? ‘U|H4(1)
Biharmonic Equation

2 ~
AU = Ugpae + 2uazmyy + Uyyyy = f,.%‘ S Q,u‘ag =0,Vu- n|6Q =0

/UA2udx=/fvdm
Q Q

/ vA?udr — / AvAudr = / v(VAu - 1) — Au(Vv - n)ds
Q Q 0

Multiply by v and integrate over .

Using Green’s identity,

Orif v|pa =0, Vv - fi]aq = 0,

/ vA*udr = B(u,v) = / AvAudx = / fvdz = L(v)
Q Q Q
So our space will be V = HZ, with energy

Eu] = %B(u,v) — L(v)
Our bilinear form is bounded, symmetric, and coercive (proved with [v|| ;. < ||L?
is bounded with L = || f||,--

For 2D, we need 5th order polyomials, thus a ¢G(5) method. So our approximate V (assuming 2 has a
polygon boundary) is

| A,,)- Our functional for f

m4l=5
Vh:{veHQQ vy, = Z alm by™ vl gq = 0, Vo - [ i O}
m,l=0
We have 6 conditions
e v is continuous on 3 edges
e Vv -1 is continuous on 3 edges

Error estimate from Cea’s lemma
Ju— Uh||H2(Q) < ch® ‘U|H4(sz)

12
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8 2D Mesh Generation

Finite Element Methods have no inherent restriction on the mesh. The simplest and most flexible way to
handle the mesh is a simplex. This means a triangulation in 2D and tetrahedrals in 3D. A general simplex
is unstructured. Let K; = {Kj}j,vi1 That is, the nodes don’t necessary lie along the grid points. Let
Xpn = {(z, yi)}f\il be the set of nodes (vertices of the triangles) and let S, = {sl}lE:1 be the set of edges of

the triangles. Let i; be the longest edge of K; and let i = max h;, and let p; be the diameter of the
S)SM
largest circle inside K. A triangularization is regular if there exists a constant oo > 0 independent of

h such that Z—j << «forall ;.

8.1 Mesh Generation Part 1

Given points in R?, we must form a triangularization. For each point, we can assign an area of
influence known as the Voronoi Region V. Let X be a set of V points/nodes. For each X; € X, the
Voronoi region is the set of points in R? that are at least as close to %; as any other point in X.

Vi={ReR?: R —%| <|X-%i| Va;€X}

That is, it is a collection of half planes defined by the intersection of the half planes H;; = {X € R? : |X — X;|| <[|X — X
This forms a convex polygonal region V; which is possibly unbounded.

Every point in = ¢ R? has at least one nearest point in X

Two Voronoi regions lie on opposite sides of perpendicular bisector and they never share any
interior points. Thus points that belong to two or more regions must lie on a boundary.

Voronoi regions will cover the entire plane.

Voronoi regions along with their edges and vertices form the Voronoi diagram of X.

For a given X, the Voronoi diagram is unique.

8.1.1 Delaunay Partition

Let X be a set of vV points in R%. Let VV be the Voronoi diagram of X. The Delaunay partition
is obtained by creating an edge between 2 points in X if and only if their Voronoi regions share a
boundary. Mostly, this creates triangles that share a common Voronoi vertex. In the degenerate, 4 or
more points share a common Voronoi vertex if the points are co-circular. Degeneracies can always
be converted into a triangularization by slicing. The Delauney Triangulation 7}, is the Delaunay
Partition of a set of NV points in R? with some strategy to convert degenerate elements into triangles.

e The Voronoi diagram and the Delaunay triangulation form a duality.

For a given X, V is unique and T}, is unique up to degeneracies.

Ty, contains O(N) triangles for N points.

T, maximizes the minimum angle.

A circle that circumscribes any triangle in 7;, does not contain any X € X in the interior of the
circle.

In C, you can use software from www.qghull.org

13
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In MATLAB, you can create this via the command t=delaunay(p) which can be plotted via trimesh(t,p(:,1),p(:,2))
where p is your list of points. Your solution u can be plotted via trisurf(t,p(:,1),p(:,2),u). If N is the

number of nodes and 1/ is the number of triangle, then ¢ is an 1/ x 3 array of positive integers where

for each (i, j) i is the triangle index (1,...,M) and j is the node index (1,2,3). So the three vertices of

triangle k are p(t(k,1),1: 2),p(t(k,2),1: 2),p(t(k,3),1:2).

8.2 Mesh Generation Part 2

How do we define a domain? One idea: defined a function ¢(z) and consider the level sets of ¢. Let
the boundary be defined by the zero level set. As an example, consider

#(z) = ||z]|, — R Q={zeR®: ¢(z) <0} 00 = {z e R?*: ¢(z) = 0}

That is, the domain is a disc of radius R centered at the origin with the circle of radius R being the
boundary. The exterior of our domain are points such that ¢(z) > 0. These level set functions are
non unique. For example, ¢(z) = ||z||” — R? for p € N describe the same domain and boundary as the
above level set function. You can use different norms (even mixed norms) to make various shapes.
To make a square, use

o(x) = ||zl — R Q:{x€R2:¢(x) <O} 8Qz{x€R2:¢(x):0}

Boolean Operators Consider ¢, (z) = ||z|| — R1, ¢2(x) = ||z|| — Rz

¢3(z) = min {¢1(z), p2(z)}

This function produces a negative for any point in either set, so it is easy to see that if ¢; produces
Q; and ¢ produces ., then Q3 = Q; UQ, and 003 = {z : ¢3(x) =0}
Similarly,

¢3(x) = max {$1(z), ¢2(2)}

Produces the intersection of the domains. That is, 23 = Q; N Qs.

Signed Distance Function (SDF) Note: Vo) js a unit vector that is perpendicular to the level

Vel
curves of ¢(x).
Vo(z)
Vel

So we let ¢ be a level set function. Noting that ¢|s, = 0, if

lo=0 = 7, outward pointing unit normal on 052

) —dist(z,00Q) €
9(z) = {dist(x, o0) x ¢ Q

then ¢(z) is called a signed distance function (SDF).

Example: Consider the annular region defined by 1 < r» < 2. This can be defined by ¢;(z) =
max {1 —r,r — 2} or ¢ = (r — 1)(r — 2), but only ¢(z) is a signed distance function.

If ¢ is an SDF then |V¢|| = 1 and therefore V¢|,—, is unit normal to 02. This is because if we have
the unit normal and unit tangent vectors to the curve defined by ¢ = 0, and ¢ = 7, where 7 is the
outward pointing normal. Then

o oY, . -
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Example. Consider the circular disc of radius a. ¢, (z) = r — a, ¢2(x) = 7> — a® are both valid level set
functions for this, but only ¢, (x) is the SDF since

22 y?
r2

V1 = 1 bo(z) =9(r —a)* #1

Let be an SDF. If we want to take any point in R? and project it onto the point y c 99 that is closest
to X, we can use ¥ (point on 9Q) = X — ¢(X)V¢(X) (starting point- shift amount *unit direction) for
k=0,1,2,...

If a point is equidistant from two points on the boundary, then we have an undefined gradient. In
this case, we can project X to y € 01 via a fixed point iteration

oo VOO o o
8.3 Mesh Generation Part 3

Given a level set function ¢ that describes (2 that may or may not be an SDF, how do we generate a
triangulation of 2 with some points guaranteed to be on 9.

8.4 FEM for 2D Poisson

Consider the PDE:
-V -(Vu)=f,x €Q u=0,z € 9N

The variational problem is: Find « € V such that

//Vu-Vudi://fvdi
Q Q
forall v € V, where V = .

Our approximate V;, is Vi, = {v € V : v|, = a; + b;z + ¢;y} since our elements are triangles. We can
let

v(r1,y1) = v v(x2,Y2) = V2 v(x3,Y3) = v3

And then set up the Vandermonde matrix as such:

1 =y »n a V1
1 T2 Y2 b = (%)
1 z3 s c U3
The basis functions ¢; have nodes at (z;,y;) for i = 1, ..., N and we want them to have the following
properties
o ¢i(zr,yr) = dik
¢ ¢;|x, should be linear in z and y
e supp ¢; is all triangular elements for which (z;,y;) is a vertex
e ¢; is continuous on () (automatically satisfied by previous properties)

So we can write our basis

v(z,y) =D vz, yi) i, )

i=1

15
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So our finite element problem is to find U € V}! s.t.

/ VU-VUd)E:/ fvdx Yove V)
Q Q

N
LetU=> ¢¢(z,y)andv=¢;fori=1,..,N
j=1

where we handle the right hand side via O(h?) numerical integration
o1 o o - o o o
) / /k foidx = S Au(f(X1)¢i(X1) + f(X2)9i(X2) + f(X3) (X))
k
where A, is the area of element K and x; are the vertices of element K.

8.4.1 Poisson Eqgn on the Unit square [0, 1] x [0, 1]

For a uniform Triangulation, we fill the unit square with squares of side length » and draw diagonals
from northwest to southeast to obtain the triangular elements. We can index the interior nodes

1,...,m* where the grid spacing is » = Az = Ay = 5. The number of unknowns is equal to the

number of interior nodes which is N = m?2. The basis vanishes on the boundary, so we don’t include
those as unknowns.

2

> 6 (Vei, Vo) = (. 1)

j=1
fori =1,...,m?. So let’s build the stiffness matrix.
o Ifi=j,ai=(Vgi,Veu)=[ [, V¢ ||>dx where L, is the support of ¢;. We end up integrating
over 6 triangular elements. On each one, if ¢|;, = ai + byz + cxy then Vo|p, = ( lc)’“ ) SO
k

normVe;* = (b + c7) and if the area of each triangle is 4;, = 17?2,
L1
|| 1veiraz=gn @ + )
T
For each triangle we just need to find b, and c,. We can do this for a generic setup.

(0,zh) (h,zh)

T 4

Ts )
(o)

(zh,0)

After the details, we get that «;;, = 4.

16
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e If j =i — m then the overlap is T andTs.

! 2

2
//T (Vi Vi) d% = _%

So Ajj—m = -1
e j =1+ m. By symmetry, a; ;1 = —1

e j=i—m+ 1: overlap is 7T} and 7;. For each of these, we end up with integration of orthogonal
elements, so a; ;11 =0

e j=1i+m+ 1: by symmetry a; ;11 =0
® ajit1=—1
®a;; 1=-—1

Therefore we have the linear system A¢ = b where A is N x N (recall N = m?) and symmetric,
positive definite. For the case N =9,

D -I 4 -1
A=\ -I D -I D= -1 4 -1
-1 D -1 4

So we see this is SPD and block diagonal. The Cholesky factorization followed by forward and
backward substitution provides a fast way to do this. Another option is the conjugate gradient
method (pcg in MATLAB)

For the RHS, b, = (f, ¢;). This involves an integral over six triangles.

bi://Tl+...+/ [ soua

We employ a quadrature

This is O(h?), same as FDM.

Arbitrary Geometry What if we have an arbitrary geometry? We need to produce a list of nodes
p(1: N,1:2)and a list of triangles ¢(1 : M,1 : 3). Assume that P has been sorted so that if N/N
is the number of interior nodes, p(1 : NIN,1 : 2) are the interior nodes p(NIN +1: N,1 : 2) are the
boundary nodes. This is true for the course web code. Check ‘assemblestiff’ and ’assembleRHS’
for these procedures.

17



Pierson Guthrey
8.4 FEM for 2D Poisson pguthrey@iastate.edu

Nonhomogenous Dirichlet BCs
-V-(Vu)=f,z e u=g(z),z € 0N

We consider V, = {v € #!,v = g V 2 € Q} The variational problem becomes: Find u € V, st (Vu, Vv) =
(f,v) for all v € V. The FEM becomes to let

U= > g(Njgj@)+ Y

N, €09 N;EQ\0Q

where N; = (z;,y,) are the coordinates for the jth node. Therefore we need to solve

D (VoL Ve = (o) — D g(N;)s(x)

N; €Q\0Q N, €80
where {i: N; € Q\ 00}
Robin and Neumann BCs
V- (Vu)=f,z e u=g(x),x € 0y, Vu - i+ ku = h(z),z € 00s,

where 0Q) = 09, + 995, 7 is the outward pointing normal, and x > 0.
The variational problem is
<fvv> = - <v ! V'LL,’U>
Using Green’s identities,
(f,v) = (Vu, Vv) — ¢ Vu - hwds
J 0N
or

(f,v) = (Vu,Vv) — Vu - nuds — Vu - nwds
o) lo

We let our test functions be zero on 99, thatis v(z) = 0,2 € 90, andlet V, = {v € H'(Q) : v = g,z € 0 }.
So our variational problem is to find v € V, st

(f,v) = (Vu, Vo) —yg (h — Ku) - nods

0

or rather
(f,v) —|—7§ hvds = (Vu, Vv) — §£ Kkuvds
8Q2 892

for all v € V;.

Error Analysis Homogenous Dirichlet BCs. Recall Cea’s lemma.
lu =l 0y < Cllu = vl YV € Vi

Let v = P,u and use ||u — Pyul| ;1 < Chlu|y- (essentially, the energy norm estimate), where

M;:fQMVMMW+%ﬁﬁ

Regarding the poisson equation, if either 2 is a convex polygon or if 02 is a smooth curve, then the
solution to the weak form of the Poisson equation on (2 satisfies

HU||H2(Q) < C||f||L2(Q)

18
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Error Estimate Let /7 be a Hilbert space with the norm |||, and a scalar product (-, ). Let the
sobolev embedding V' into H (more regular into less regular) be continuous:

vl < llvlly
Let B(u,v) be a symmetric, bounded, V-ellpitic bilinear form with
B(v,v) > B.lv]}, |B(u, v)| < B%[[ullyl|v]ly

Let L(-) be a linear functional that is bounded with |L(v)| < L|v||,.. Letu € V and u,, € V}, be solutions
to B(u,v) = L(v) and B(u,,v) = L(v) respectively. Then

|lu—unlly < Cllu—upl|l, sup —F—F——
YeH\{0} 11l g

where for a given ¢ € H, ¢ € V is the solution to B(¢, w) = (¢, w) for all w € V (the dual problem).
The ||-||,; of a function f € H can be written as

_ (W, f)
Il = Sup ol

Because a function v € V is also in H, and because « — u;, € V, we get
_ <w7 u— Uh>
lu—unlly= sup —r—">"
vemvioy  IYly
where (—A¢ = ¢) But
<U7Uh,’l,z}> = B('LL*U,,“QZI)) :B(ufun,qﬁ) 7B(U*’U,h’v)
(the last term is zero by Galerkin orthogonality) where v € V. so then
[ —un, )| = [B(u = un, ¢ = )| < Cllu —unllyll¢ = vlly = Cllu—unlly inf ¢ — vl

by boundedness of B(-,:) Therefore we use this in place of (v, f) in the above to get the desired
result.

L? Error Estimate for cG(1) on 2D poisson Eqn w/ Homogenous Dirichlet BC Let u € H} satisfy
(Vu, Vo) = (f,v) forall v € Hj. Let V;! = {v € H} : v|x = Pi(k),k € T; }, where T, is a triangulation of
Q that for every i > 0 satisfy mesh regularity condition:

(longest edge of K)
< K eT;
(diameter of largest inscribed circle of K) — aV K eTh

Let u;, € V| satisfy (Vuy,, Vo) = (f,v) forall v € V; then [[u — up| ;2 < ch® |ul g2
Proof: Using the previous lemma with V = ' and H = L2,
inf {l¢ — [

Ue‘/}l

lu—unlpe <ecillu—uplly: sup ——F——
$eL2\{0} 19l 12

¢ is RHS of the dual problem B(¢,w) = (1),w) but by the previous theoprem ||¢| . < Ca|/¢| 2,
[l 2 > 5[]l = and inf, |6 — vl <l¢ = Prdll < cshllg] -
v h

lu —un|| 2 < cicocsh|lu — Prullg sup 191122
wer\{o} 18] &

so
lu = unllpz < chllu—unll g < ch® |ul g
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9 1D Heat Equation

Up — Uge = 0 O<r<,0<t<T
u(t,0) =u(t,1) =0
uw(0,2) = up(z),0 <z <1

Exact solution is

2 1
Zake 7t gin (kmx) ap = 1/7/ uo(z) sin(kmy)dy
T Jo

If up € L?(0,1) then the series converges uniformly for ¢ > 0.

Stability Estimates All nodes decay:
lu(t, M 20,1y < lwoll 20,1y vo<t<T
All nodes of the ¢-derivative decay

[Jue (2, )||L201)— t||u0||L201) Vo<t<T

9.1 Semi-Discrete FEM
Let O C R2.
—Au=f (0, 7] x Q u=0,z € (0,T] x 00 u(0,X) = ug(X),z € Q
Let V = H{(Q2). Seek u € (0,T] — V such that
(ug,v) + (Vu, Vo) = (f,v) VveV,te (0,T]

with
(u(0),v) = (uo, v) YoveV,te(0,T]

So then our Semi-Discrete FEM lets us replace V by V;, C V. Let ¢:(X), ..., on(X) be a basis for V,.

Then
N
= u;(t)on(€)
k=1
Which gives rise to a linear system of ODES once we put this into the variational problem
N N
> (i i) i+ > (Voi, Vo) u; = (f,¢5)  i=1,..,N
k=1 k=1

along with the initial conditions

N
Z (¢, d5) u;(0) = (uo, ¢5) i=1,...,N
k=1
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This can be expressed as a matrix equation with G;; = (¢;, ¢;) (known as the mass matrix, which is
SPD) along with the usual stiffness matrix 4;; = (V¢;, V¢,) and the forcing vector f; = (f, ¢;). So we
have the linear constant coefficient system of ODES

{Gﬁ+Aﬁ=?

We can solve this using the Cholesky Factorization G = RT R where R is upper triangular. Let
w = Rii so that i = R~ !'w, so we now have the system

W+ (RHTAR'W = (R™H)TF
w(0) = (BR™1)To

Now let A = (R"')TAR ' and g = (R"!)"f. A is symmetric because A” = ((R~1)TAR )T =

(R"HTAR™! = A and is positive definite because for w # 0

wlAw = wT(R-HTAR™ Y )w = dl Ad > 0

W+ Aw =g
w(0) = (R~")"do

So we can solve this exactly in time. However computationally, this is ludicrously expensive and
impractical since we already have error from the FEM anyway.

R t .
W(t) = e MW(0) + / e At=9g(s)ds
0

Error Analysis for ? (missing notes 11/4)
lu(t) = un(®)ll 12 < lluo — Pruoll 2 +ch® (I?[])
Proof: Let ¢(t) = u(t) — u,(t) and write
e(t) = (u(t) — Ruou(t)) + (Rpu(t) — un(t)) = p(t) + 0(t)

where p(t) € V and 6(t) € V;'. From the elliptic error analysis: ||p(t)| ;. < ch?|u(t)| 5. but u(t) =
u(0) + fot ut(s)ds. Therefore

t
lp(®)ll 2 < ch? (”uOHL2 +/0 ut(S)H2dS)

We also note that
(ug,v) + (Vu, Vo) = (f,v) Vo e Vil cV

using the Ritz projection: (Vu, Vv) = (VR,u, Vv). Therefore
(us — Rpus + Rpug,v) + (VRyu, Vo) = (f,v) Yov € V!

So from this we subtract our FEM (u;, ;,v) + (Vuy,, Vo) = (f,v) for all v € V,! so recalling p = u —
Rhu, 0= Rhu — Up,
(pt,v) + (B¢, v) + (VO,Vv) =0
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for all v € V,'. but 6 € V!, so we can take v = 6:

(0:,0) + |VO]|72 = — (pr,0)

but L d 4
_— 2 — .
(00.6) = 52 16@NI72 = 10012 5 162
also,
—(pt,0) < llpell 21101 12
Therefore

d
10Oz < llpell 2
If we integrate from O to ¢
t
10()] 2 — 10(0) ]| 2 S/O [p2(s)]l L2 ds
or )
102 < 10(0)]] 12 +/0 [p2(5)]l L2 ds
But
16(0)|| > = [|IRhuo — uo + o — Pruoll 2 < [[Rauo — uoll 2 + luo — Pauoll > < ch®||uoll g2 + lluo — Pauoll

And
loell 2 = llue — Rauell 2 < ch®|Jug| e

Recall that the ritz projection has the property (VR,u, Vv) = [[ VuVov and the projection onto the
mesh has the property (u;,v) = (u,v).

t
1608)] 2 < lluo — Pouoll = + ch (|uo||H2 +f ||ut<s>||szs)
0

t
IOl < ch? (uo|H2 v ||Ut(5)||H2d5>

[[u(t) = un(®)ll L2 < llp(®)ll L2 [10E)] L2

Backward Euler Instead of solving exactly in time, we can use time stepping methods. Consider
the variational problem
—ul

un n—1
<hdt’v> + (Vuy, V) = (f",v)

forallv € V" and foralln =1,..., K. where At = L.

(up,v) = (ug,v) Vv e vh

N
uZ:Zu?gb] v=¢;Vi=1,..,N
j=1

In matrix form, we have our mass matrix G and stiffness matrix A

G = (i, b5) A= (Vi V;) f={f 1) ug = (ug, ¢;)

Therefore
Gu™ — Gu" ' + AtAu™ = dtf" Gu® = ug

or
(G + dtA)u"™ = Gu™™ ! +dtf" Gu® = ug
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Stability Assume f = 0. Take v = v} in variational problem

(up, up) — (u =t up ) + At (Vugt, V) = 0

iz — (g™t uft) + At Vug||z. =0
but (up ", up) < |lup ™| L llufll e < Lllufl7. + 2[jup ]|, so using this in the above formula,
il < flun e < o < w2 < luoll 2
So the Backward Euler Continuous Galerkin Method is (BEcG) is unconditionally Z? stable for an
y

At > 0.

Theorem Condtions? notes 11/6/2014

tn

||u:;—u<t">L2<ch2<nuonm+ / |ut<s>H2ds>+At | ()]s
0 0

Note this means |ju} — u(t")|,. = O(h* + At), second order in space, first order in time.
Proof: Let p(t) = u(t) — Rpu(t). Then

u(ty) —ul = e(t™) = u(t™) — Rpu(t™) + Ruyu(t™) — ul = p(t™) 4 0(t™)

Note: ¢ is only defined at ¢ = nAt forn =1, ..., K, while p is defined for all ¢ € [0, T] while p is defined
forall ¢t € [0,T]. As in the semi-discrete case:

o
o) 2 < ch? (Iuolle +/0 IUt(S)HszS)

And the Ritz projection is (Vu, Vv) = (VRyu, Vv) for all v € V;!. Therefore
<ut7 U> =+ <VRhu7 VU> = <f’ U>

or in the discrete case

(R ) o) 4 (VR T = (o) + (o) (STAR)

where w, = R, “)=4"") _ 4, (). Note that this is true for all v € V;' Now we introduce the FEM:

n_ ,n—1
<w,v> +(Vuf, Vo) = (f,v) Vv e V)

Subtract this from star, and define 6(t") = Ryu(t") — uy

n — enfl
<At’v> +(VO", V) = (w",v)

Let v = ™. So we have

GTL — 97L_1 0” + <v97b v67l> — < n 97L>
At ) ) = (w )

or
n||2 n gn— n n
16772 — (67, 6" 1) < Atflw™ ]| 216" 12
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but (67,6"1) < [|6™] 2 ]|6"]] .
10712 = []0" 7] o < Atllw™]| 2

Summing this inequality fromn =1, ..., 1,

!
16']] 12 = [16°]] 12 < ALY [l 2

n=1

now we write

" = wh 40l = (B — 1) (u(t") —u(t" - At)) . (u(t”) —u(t" — At WW)

At At

So then estimating each part,

I
wy = (Rp — 1) E/ ug(s)ds
t

n_dt

o 1 ch? [V
lols = 57 [ IR = D)l pods < S [ (o) ads
so
l ¢!
MY e < et [ (o) e
n=1
Also

Atwy = (u(t™) —u(t™ — At) — Atu (t7™)) = /t ("1 — s)uy(s)ds

n_dt
Where z(t) = (t" ! — t)uy(t) and

" tn "
/ z(t)dt = / ("1 — $)uy(s)ds = —Atu, (t") + / ui(s)ds = —Atug (") + u(t™) — u(t" — At)
tn—1 tn— At tn—1

So since (1" ! — s5) < At
t’IL

l[wee(s) || 2 ds
—dt

l
Aty fug| <At [

n—1 tn

Lastly, we see

10°]] > = || Rnuo — wpl| > = || Rnuo — Pru®|| o < IRhuo — woll 2 + [luo — Prul » < ch®[luo|l -
Therefore . .
1671, < ol + cxh® [ (o) s+ At [ ()]
Finally,

. o
gy = (™)l < 10"l g2 + 10" [l 2 < csh® <||u0||H2 +/ ut(5)|H2dS) + At/ [wrt(s)]| L2 ds
0 0
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9.2 Crank-Nicolson Method
9.3 Stiff Problems

9.4 Nonconfroming FEMs
Consider
-V -Vu=fz e, u=0,x € N

Find u € H}(Q2) such that
(Vu, Vo) = (f,v) Vv € H Q)

Conforming FEMs replace V' by a finite dimensional subspace V;, such as V, = {v € H}v|x = ai + brz + cxy}-
Nonconforming FEMs consider finite dimensional spaces that are not subspaces of I/. For example,
the Crouzeix-Raviart element space (1973) is

Vi, = {v € L*(Q) : v| = ay, + bz + ¢4y, v is continuous at the midpoints of interior edges, and v=0 at the midpoint of

Note: Each element has 3 degrees of freedom and 3 constraints (otherwise the problem might be
ill-posed).
Clearly, V;, ¢ V and has less regularity than V. Therefore we need to reinterpret the Bilinear form as

B(u,v):/ Vu - Vudz turns into By, (u, v) Z // Vu - Voudz
Q

keTy,
Note this By (-, -) is symmetric, and
=Y IVulZa ) >0, Vu e Vi \ {0}
keTy
So our Variational problem is: Find u;, such that
> (Vun, Vo) = (f,v) Vv eV,
keTy,

What is our new basis? Let €; denote that midpoint of edge j, where j = 1,..., S, where S is the
number of edges. Let the edges be ordered such that j = 1, ..., S refer to the interior edges, and let
j=25,...,5. Since u = 0 on the boundary,

s
ile;) =85 = un =Y u;0;

j=1
Use test functions v = ¢, for i = 1, ..., , so the matrix form is
Al =f,d = (ur, ., ug)T
where f; = (f, ¢:), Ai; = Bn(¢i, ¢;). Symmetry of B;, implies symmetry of A. We also see

S 5 8 5 8
vl Av = ZUZ (AV); = ZZ i Ai v = ZZUiBh((bi?(bj),U

i=1 =1 i=1 j=1

By linearity

S s
h(z Ui¢iazvj¢j = Bp(vp,vp) = Z ||VUh||iz(K) >0V, €V \ {0}
- —

keTy

Therefore A is SPD.
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9.4.1 [? error estimate

= wnl oy + b 3 19— w) ey < bl
keT,

9.4.2 2D Biharmonic Egn

Au=fze u=Vu-n=0,x €0

Let H3(Q) = {v € H*(Q) : v =Vu- 7 =0,z € 9Q}. The variational problem is to find u € H3(Q2) such
that
(Vu, Vo) = (f,v) Yv € H(Q)

In 2D on triangles, the minimum degree polynomial in 73(Q2) is 5. So we consider the modified
bilinear form (the one for the plate problem). Let

B(u,v) = B(u,v) + (1 — 0)S(u,v) , Where B(u,v) = (Au, Av) ()

where 0 < o < 1 is Poisson’s ratio. And S(u,v) = — (Au, Av) + (Ugg, Vaa) + 2 (Uay, Vay) + (Uyy, Vyy)-
Using appropriate integration by parts,

0w  Ov  O*udv
S v) = r sl d
(w,v) 5’29 <8ﬁ8t oi o 6ﬁ> °

where 22 = Vv -7 and 2% = Vo - £. 71 is unit normal to 9. ¢ is unit tangent to 9.
on ot

O*u ~\ Valld

82“ 2 2
5 = ZZ???
i=1 j=1

Forv € HZ(Q),v=00n 0280 Vv -t =0o0ndN. Vuv-i=0on dN. Therefore S(u,v) = 0. Using IBP,
u € H3(Q),v € H*(Q2), something?
Therefore the modified variational problem is to find « € H2(Q2) such that

B(u,v) = (f,v)
Note that B(-,-) is symmetric. It is also continuous since

)B(u, v)

< ol Aul 2 [|Av]| 2 + (1 = o)l[ull g2 0]l 2 < ollull 2 l|vll 2 + 1 = o) ull g2 vl g2 < llull g2 llv]l 4
This bilinear form is also V' —elliptic

r 2 2 2

B(u,v) = o[|Av[> + (1 = 0) [v]g = Bllv] o

Therefore the modified variational problem satisfies the Lax-Milgram Theorem. In fact, if u € #*(Q2),
then solutions with B(-,-) and B(-, -) will be identical.

The Equivalent minimization problem is to find u € H? st
F(u) < F(v) Vv e H2(Q)

where

B(v,v) = (f,v)
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The nonconforming FEM with the (Morley Element) is:
Let V;, be the set v € L?(Q) such that

2

v = Py(k), thatis v|, = ago + a0z + agry + a112y + asz? + agsy

v is continuous on interior nodes

v = 0 on bdy nodes
e Vv - is continuous on the midpoints of interior edges

e Vv -n = 0 on the midpoints of the bdy edges

Let

Bh(u,v) = Z o (Au, Av) e + (1 —0) ((um,vm>K + 2 (Uay, Vay) g + (Uyy, ”yy>K)
k€T

The Variational Problem is to find «;, € V}, such that
Bh,(u/U) = <f,’U> \V/ v E ‘/}1/
This is solvable because if we let the discrete norm on this space be

2
lonlly, = Z (<Um, Voz) e + 2 (Vay, Vay) jc + <Uyyvvyy>K)

then
Bu(u,u) = > o (Aup, Aup) + (1= o)|lunlly > 1= o) |Junll} ¥ u € Vi,
keTH

So By, (-,-) is symmetric and positive definite as longas 0 < o < 1.

The L?-error analysis prove by Lascauz and Le Saint in 1978.

= unl 2y < b (Il sy + blul sy

Note: The Morley element methid is O(h?) accurate and has far fewer degrees of freedom than the
O(h*) H2(©2) conforming FEM.
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Lemma: Strang’s Second Lemma

e Let V be a Hilbert space such that V = #{(2) for some integer » > 0. Let B(:,-) : V xV — R be
a bilinear form that satisfies assumptions of Lax-Milgram. Let L : V — R be a linear functional
bounded on ||-||,,.

e Let Vj, be a finite dimensional space with norm |-||,. Let B,(-,-) : V,, x Vj, — R be a discrete
bilinear form that satisfies
— Bp(u,v) = Bp(v,u) forall u,v € V3,
— |Bp(u,v)| < B*||ull,||v]l, forall u,v € V}, UV (both spaces!)
- Bp(u,u) > ﬁ*HuHi for all u € V}, (analogous to V —ellipticity)
where 5%, 3, > 0 and are indepenedent of /. Let L;, : V;, — R be a linear functional bounded in |||, .

If uw € V is the unique solution to B(u,v) = (f,v) for all v € V and u;, € V}, is the unique solution of
By, (up,v) = Ly (v) for all v € V;, then there exists a constant ¢ > 0 independent of /. such that

B - L
fu—unly < inf fu—ul,+ sup Pl Lnle)]
vEV), weEV , w#0 Hw”h

This is a generalization of Cea’s lemma. The extra (second) piece comes from the fact that we
are using a modified bilinear form that isn’t exactly correct. This second piece vanishes in the
conforming methods, and is known as the consistency error. The first term is the approximation
error.

Proof of this error estimate: For any v € V},:

Ballup — v||i < Bp(up —v,up —v) = Bp(up —u+u—v,up —0)
< Bp(u —v,up, —v) + Bp(up, up — v) — Bp(u, up — v)
< Bp(u—v,up, —v) + Lp(up, —v) — Bp(u, up — v)
Bp(u —v,up —v)  Lp(w) — Bp(u,w)
l[un = vl|, [[wll,
< lu—vll,+ sup Lr(w) = Dalww)
wWE Vi, w#0 [[wll,

. Ly(w) — Bp(u, w)
B ([lun = vy, + lu = vl,) < (8% + Bo)llu —vll,, +  sup
WE Vi, w#0 [[wlly,

Billun — vl <

Using the triangle inequality, on the left hand side, we have

. Ly (w) — By (u,w)
Ballun —ull, < (B* + Bi)llu— v, +  sup
wEVy, ,w#0 Hth

L - B
|un —ull, <ec (u —oll, + sup n(w) h(“»“’))

wEV, ,w#0 ||th

' Lp(w) — Bp(u,w
|lup, —ull, <c| inf |lu—v|,+ sup n(w) (s, )
vEVS, wWE Vi ,w#£0 ||th

Where taking the infimum comes from the fact that the second to last line is true for all v € V},.
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10 Mixed FEM

For the Poisson problem,

1 1
/ wu'dx = / fwdz
0 0

Variational Problem : Find « € V and p € W such that « = —p’ and

1 1 1 1
/ uvdr = / pv'dx / wu'dr = / fwdeVveVweW
0 0 0 0

This seems backwards, « is more regular than p.
Claim: The Variational Problem is equivalent to a saddle-point problem (as opposed to a minimiza-
tion). We want to find v € V and p € I such that

F(u,w) < F(u,p) < F(v,p) Vo e Viwe W

1t 1 1
Fv,w) = 5/ vidx —/ v'wdx Jr/ fwdz
0 0 0

That is we maximize with respect to the second argument and minimize with respect to the first
argument.

where

Proof of Problem equivalence Suppose u € V and p € W are solutions to the variational problem
(u,v) = (W',p)=0VoveV (' wy = (f,w) YVweWw

Letr=v—uecV.lf Flv,w) =3 (v,0) — (v/,w) + (f,w),

F(v,p) =F(u+7,p) :%<U+T,U+T> — (' + 7wy + (f,w)
1 1

=3 (u,u) + (u, ) + 3 (1,7)

- <u/aw> - <T/7w> + <f7w>

1

= (; (u,u) — (u',p) + (f,p>) + ((u, 7y — (7, p)) + . (7, 7)

—F(u,p) + 3 (r,7)

Since the second set of parentheses disappear via the variational problem. Therefore
F(v,p) > F(u,p) Vv eV
For the second part of this proof,let r=w —p e W,
F(u,w) = F(u,p+7) = F(u,p) — (', 7) + {f,7) = F(u,p)

therefore
F(u,p+7)=F(u,p)

So then we only need to minimize in the first argument. The second argument will not change the
energy at this minimum for the Poisson problem.

F(u,w) = F(u,p) < Flu,p)YveViweW
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Now we need to prove the converse equivalence. Suppose u € V and p € W satisfy
F(u,w) < F(u,p) < F(v,p) VveViwe W
So for a minimizer v, let G be defined as
F(u,p) < Flu+ev,p)=G(e) VveV,ee R
So then ) )
Ge) = Flu+ev,p) = 5 (wu) + € (u,0) + 5¢* (v,0) = (W, p) = € (', p) + (£,p)
G(0) is a minimum, so then we expect that G’(0) is a critical point.
G'(€) = {u,v) + ¢ (v,0) — (v/,p)

So then at ¢ = 0,

(1,0) = {v/, )
Secondly,
G() = Flu,p+ew) < F(u,p)
G(e) = 5 () — (o) — ) + () + € (f )
G'(e) =~ {ul, w) + (f,w)
Soatec=0,

(', w) = (f,w)

Thus we have proven equivalence

10.1 Finite Element Method

Let Ty be the mesh with {l‘l} = {l’o,.rl, ...,IM,IM+1}. Let I; = (l‘i_l,xqj) with hi =x; —x;_1. We let Vi
be piecewise linear and let 1V}, be piecewise constant

Vi = {U€H1(071):U‘]i :ai—i—bix}

Wy, ={we L*0,1):w|,} =¢

Note that we do not impose the boundary conditions in the space. Boundary conditions are weakly
enforced via the variational problem.

The FEM is to find u;, € V}, and p;, € W, such that
(up,v) = (V',pp) Vv €V, (up,w) = (f,w) Vw e W),

Claim: There exists a unique solution to FEM. Proof: It suffices to show that if / = 0 then the only
solution is u, = p, = 0. Let f = 0 and take v = uy, w = py. SO

(un,un) = (up, pn) (U, pn) =0 = |lunllpe =0 = up =0

This implies
(Wipn) =0Yv eV,

So pick v such that +' = 0 for all elements except one. This means p, = 0 on that element. Repeat
this process for all elements to conclude that p;, = 0.
SO we note that the FEM is equivalent to a saddle point problem: find u; € V}, and p,, € W}, such that

F(Uh»w) < F(Uh,ph) < F(%Ph) Vove Wl)w e Wy
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1 i
Mixed FEM Basis Let ¢; € V}, such that ¢;(z;) = {0 Z 7&‘7_ This is the hat function just like we had
vt7F]

1 z€ (Zi_l,flji)

in the cG1 method. However, we also have that i, ¢ W),, ¢;(z;) = et
0 elsewhere
M+1 M+1
up = Z ujQ; Ph = Z Pk
=0 k=1

The u;, bases are based on nodal values (values at each z;)- there are M + 2 of these. The p,, live
inside the elements, based on modal values- there are M + 1 of these.

Formulation
M+1 M+1
> (b i) u Z (&, k) pr =0
7=0 k=1
M+1
> A duyuy = (f,1)
j=0

So let A € RM+2)x(M+2) gpd B € R(M+2)x(M+1) where
auz(qbi,qu> 1=0,....M+1 =0, M+1
bij = (B, Vi) i=0,.,M+1 k=1,.,M+1

(a 0)(5)-(%)

This matrix is symmetric but not positive definite. It has positive and negative eigenvalues, but it
can be shown that 0 is not an eigenvalue, so we have a unique solution. If we use a uniform mesh,
we see that

So we have the system

h B 4h
6 "6
brp =1 py1,p = —1 k=0,1,....M

ap,0 = AM+1,M+1 = Ai—1,4 = Qi41,5 =

Wl

L? error analysis
[P = pall 2 + llw —unll 2 < chllpll e

and
= unll > < ch?[|pll g

This is the opposite result as what we found for the cG(1) method.

10.1.1 Multi Dimensions

—Ap=/finQ p=0o0n o

Leti=-Vpso -V -Vp=V.u=H.
Define the spaces V = H(div, ) = {\7 € [LQ(Q)}2 :V-ve L2(Q)}. W = L2(Q). Let v € V be a test

function
//ﬁ-vdi:—//v-vo&:/ V-Gpdi—yg pv - Nds
Q Q Q o0
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Since p = 0 on the boundary, we have

//ﬁ-\?di://v-\?pdi
Q Q

So the variational problem is to find i € V and p € W such that
(U,v) —(V-V,p)=0VveV
(V-d,w)y=(f,w) VweW

We now consider the Raviart-Thomas (1977) elements. They are triangular elements where we let w
be constant on the triangles

Wy, = {w € L*(Q) : w|, = a), (constant) }

V;, is trickier since the divergence needs to exist across the element edges. One idea is to use

B ag +a1x + a
Vh:{v6L2(Q)IU|k:< bt bt by >}

Note that V - V|, = a1 + b2 which is a constant. This has 2 many degrees of freedom. So we have
the additional constraint that the outward pointing normals are constant on each edge: v - 7i|. =
constant. This gives us the constraint
‘_;| _ ag +a1x
P b+ ary

B ag + a1
Vh:{veLQ(Q)”f’f: ( b2+aiy )}

Proof: 6y = (y3 — yo,m2 — x3) 1 L (3 — T2,y3 — y2), iy = (y1 — Y3, T3 — r1) Hy L (21 — 23,91 — ¥3),
ﬁg = (yg —Y1,T1 — l’g) ﬁg J_ (IQ —T1,Y2 — yl)- Note that ﬁl +ﬁ2 +ﬁ3 = 0

So our element space is

e1:x1(8) = xo + s(x3z — x2) y1(s) = y2 + s(ys — y2)

ez : To(s) = x3 + s(v1 — x3) y2(s) = y3 + s(y1 — y3)

e3: x3(s) = a1 + s(z2 — 71) y3(s) =y1 +s(y2 — 1)
without loss of generality: (z1,y:) = (0,0) and (z2, y2) = (0, y2). Constraints

L @ls)hu(s) #=0  1=123

QU

Byt as(ys — y2)ar + (ys — y1)°az — biag + x3(y2 — y3)ba =0
Es : x3y3a1 + y3a2 — 173 + 23y3be = 0
E2 :???a1 =0

as; = 0. Subtract £, from E; to get that b» = a;. Then E; tells us that b5, = 0. Note: The Edge to
ag + a1x )

Element inversion: v - 7, = E; for [ = 1,2, 3 can uniquely determine v |k = ( bo + ary
0 1

3 3 3
-1 -1 -1
CLo:r'K' g 1 B 60:72|K| E yi B COZT‘K| E E;
=1 =1 =1
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Where | K| is the area of the element K. Therefore

3
1
V'Ulk:2a1:®ZEl
=1

So the divergence is piecewise constant.
So the FEM is to find u;, € V;, and p;, €¢ W, st

(tp, ¥) — (V- V,pp) =0V V €V,

(V- tdp,w) = (f,w) YVweW,

where
Wy, = {w € L*(Q) : w|, = ax, (constant) }

t@:{vefumuﬂymkz(ak+“m)}

cr + bry

Basis Let¢, € V, fori =1,..,S where S is the total number of edges. Where (¢, -7)(€),) = d;, where
€, is the midpoint of the kth edge.

S
Uy = u;d,(X)
=1
With u; = (u, - 7;)(€;) (u, dotted with the normal and evaluated at the midpoint).
S —
i =D u;65(%)
=1
Let v, € W), fori =1, .., M where M is the total number of elements.

- 1 )EEkq
¥i(X) = .
0 X¢]€l

M
Pn =Y piti(¥)
=1

where p; = U%I /[ K, prdX (the average value of the pressure over the element).
no class on dec 4 nov 2 hw 3 due presentations begin dec 11

11  Appendix

Areas To calculate the area of a triangle given the vertices X, X», X3,

1o o S o
area = §H(X3 —Xl) X (Xg — Xl)”
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