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Part I

Finite Element Methods
Notation. Let the default norm be the L2(a, b) norm. We define the weighted a-norm and the Energy norm
as such.

‖ψ‖ = ‖ψ‖L2(a,b)

‖ψ‖a =
∥∥√aψ∥∥

L2(a,b)
=

ˆ b

a

a(x)(ψ(x))2dx

‖ψ‖E = ‖‖

1 Introduction

Consider the BVP{
− (a(x)u′)

′
= f(x) x ∈ (0, 1)

u(0) = u(1) = 0
, 0 < amin < a(x) < amax <∞, (BVP1)

Notice BVP1 is self adjoint with 0 /∈ σp(L). This has a solution as long as f is continuous and a ∈ C1.
We reformulate this as the variational problemˆ 1

0

au′v′dx =

ˆ 1

0

fvdx, v ∈ H1
0 (VAR1)

which has a unique solution.

2 cG(1): Galerkin FEM

The continous Glaerkin Method of Order 1 considers the variational problem and chooses hat functions as
the trial and test functions .

2.1 Neumann BCs

Consider {
− (a(x)u′)

′
= f(x) x ∈ (0, 1)

u(0) = 0; a(1)u′(1) = g1

, 0 < amin < a(x) < amax <∞, (BVPN)

We choose V =
{
v ∈ H1

0, v(0) = 0
}

so the variational problem is
ˆ 1

0

au′v′dx− g1v(1) =

ˆ 1

0

fvdx

We then use the approximate test fuction space

V 1
h = {φ1, ..., φM , φM+1}

Where φM+1 is an added half-hat function. Let U(x) =
M+1∑
j=1

ξjφj(x) so our variational problem becomes

M+1∑
j=1

ξi

ˆ 1

0

a(x)φ′j(x)φ′i(x)dx− g1v(1) =

ˆ 1

0

fφidx+ g1φi(1)
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3 Ritz FEM

4 New Notes

....
Note that for ψ st −(aψ′)′ = ξ, ψ(0) = ψ(1) = 0,

Sa = max
ξ 6=0

‖ψ′′‖a
ξ
≤ C(a)

So
‖aψ′′‖ ≤ ‖f‖ + ‖a′ψ′‖ ≤ ‖f‖ + ‖a′‖∞‖ψ

′‖

4.1 An a posteriori error estimate

Let e = u− U , then

‖e‖2E =

ˆ 1

0

ae′e′dx =

ˆ 1

0

ae′u′ −
ˆ 1

0

ae′U ′dx =

ˆ 1

0

fedx−
ˆ 1

0

ae′U ′dx

Subtract from this ˆ 1

0

fvdx−
ˆ 1

0

aU ′v′dx = 0

So we have

‖e‖2E =

ˆ 1

0

f(e− Pne)dx−
ˆ 1

0

aU ′(e− Pne)′dx

=

M+1∑
j=1

ˆ xj

xj−1

(f(e− Pne)− aU ′(e− Pne)′) dx

=

M+1∑
j=1

ˆ xj

xj−1

(f + (aU ′)′) (e− Pne) dx
M+1∑
j=1

[−aU ′(e− Pne)]
xj

xj−1

Since (e− Pne)|xj = 0 for all j = 0, 1, ...,M + 1

‖e‖2E =

M+1∑
j=1

ˆ xj

xj−1

R(U) (e− Pne) dx =

ˆ 1

0

R(U) (e− Pne) dx

where R(U) = f + (aU ′)′.
Cauchy,:

‖e‖2E ≤ ‖hR(u)‖a−1

∥∥h−1(e− Pne)
∥∥
a

Note that
∥∥h−1(e− Pne)

∥∥
a
≤ C‖E‖a.

Theorem: Error Estimate There exists a constant C depending only on a(x) such that the cG(1) FEM
approximation U satisfies

‖u− U‖E = ‖(u− U)′‖a ≤ C(a)‖hR(U)‖a−1

Adaptive Mesh Refinement Steps

1. Compute the approximate FEM solution on a uniform coarse mesh.
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2. Calculate the error on each element Kj

E2
j = (xj − xj−1)2

ˆ xj

xj−1

1

a(x)
R2(U)dx

If E2
j ≤ ε2

c2(M+1) , move onto next element.

If E2
j >

ε2

c2(M+1) , subdivide the element into 2 or more elements, then move onto the next element.

3. Recalculate solution on the new mesh.

4. Repeat 2-3 until no subdivision is required.

Note that the constant c is unknown. The more accurately we know this c, the better our estimate will be and
therefore the more efficient our code will be. Estimates for c can be given by calibration based on known
solutions.

4.1.1 L2 norm a-posteriori error estimate

‖u− U‖ ≤ CsCI
∥∥h2R(U)

∥∥
where ∥∥h−1(φ− Pnφ)

∥∥ ≤ CI‖φ′′‖
and

Cs = max
ξ 6=0

‖ψ′′‖
ξ

, −(aψ′)′ = ξ

Proof. We have the dual problem −(aψ′)′ = e, φ(0) = φ(1) = 0, so

‖e‖2 =−
ˆ 1

0

e(aψ′)′dx =

ˆ 1

0

(u− U)(aφ′)′dx

=

ˆ 1

0

a(u− U)′φ′dx− [(u− U)aφ′]
1
0

=

ˆ 1

0

au′φ′dx−
ˆ 1

0

aU ′φ′dx

=

ˆ 1

0

fφdx−
ˆ 1

0

aU ′φ′dx−
(ˆ 1

0

fvdx−
ˆ 1

0

aU ′v′dx

)
, v = Pnφ

=

ˆ 1

0

(
f(φ− Pnφ)−

ˆ 1

0

aU ′(φ− Pnφ)′
)
dx

=

M+1∑
i=0

ˆ xj

xj−1

R(U)(φ− Pnφ)dx

=

ˆ 1

0

R(U)(φ− Pnφ)dx

≤
∥∥h2R(U)

∥∥ ∥∥h−2(φ− Pnφ)
∥∥

≤
∥∥h2R(U)

∥∥ CI‖φ′′‖
≤
∥∥h2R(U)

∥∥ CICS‖e‖
‖e‖ ≤

∥∥h2R(U)
∥∥ CICS

3



Pierson Guthrey
pguthrey@iastate.edu

Using this, we modify step 2 of the adaptive mesh refinement

E2
j = (xj − xj−1)4

ˆ xj

xj−1

R2(U(x))dx

and let c = CICs in step 2.

5 cG(2) Method

Consider our favorite BVP/VAR

−(au′)′ = f, u(0) = u(1) = 0 ⇐⇒
ˆ 1

0

au′v′dx =

ˆ 1

0

fvdx, ∀ v ∈ V = H1
0

Now we use the approximate V 2
h :

V 2
h =

{
v ∈ V : v|kj = aj + bjx+ cjx

2
}

We seek a basis {φn} such that V 2
h = span {φn}.

Given a mesh Th = {hi}M+1 so that xj = x0 +
j∑
i=1

hi, we introduce a submesh that divides the mesh Th

into subintervals of size 1
2 . We then consider the Lagrange polynomials

(1, 0, 0) := p1(xj−1) = 1, p1(xj− 1
2
)1 = p(xj) = 0

(0, 1, 0) := p2(xj− 1
2
) = 1, p2(xj− 1

2
)1 = p2(xj) = 0

(0, 0, 1) := p3(xj) = 1, p3(xj− 1
2
)1 = p3(xj−1) = 0

φi(x) =


2(x−x

i+1
2

)(x−xi+1)

(xi+1−xi)2
xi ≤ x ≤ xi+1

2(x−x
i− 1

2
)(x−xi−1)

(xi−xi−1)2 xi−1 ≤ x ≤ xi
0 otherwise

φi− 1
2
(x) =

{
4(xi−x)(x−xi−1)

(xi−xi−1)2 xi−1 ≤ x ≤ xi
0 otherwise

V 2
h = span

{
φ 1

2
, φ1, φ 3

2
, φ2, ..., φM , φM+ 1

2

}
U(x) =

2M+1∑
j=1

ξ j
2
φ j

2
(x)

So for the same mesh Th, the cG(2) has roughly twice the amount of unknowns as cG(1) method.

For any function v ∈ V ,

(Phv)x) =

2M+1∑
j=1

v(x j
2
)φ j

2
(x)

cG(2) variational problem

2M+1∑
j=1

ξ j
2

ˆ 1

0

a(x)φ′j
2

(x)φ i
2
(x)dx =

ˆ 1

0

f(x)φ i
2
(x)dx

for i = 1, 2, ..., 2M + 1.
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5.0.2 Example

Consider a ≡ 1 and hj = h, j = 1, ...,M + 1.
Stiffness matrix
If i is odd, i = 1, 3, ..., 2M + 1,

aii =

ˆ x i+1
2

x i−1
2

(φ′i
2
(x))2dx =

16

3h

ai−1,i = ai,i−1 =

ˆ x i+1
2

x i−1
2

φ′i
2
(x)φ′i−1

2

(x)dx =
−8

3h

If i even, i = 2, 4, ..., 2M ,

aii =

ˆ x i+1
2

x i−1
2

(φ′i
2
(x))2dx =

14

3h

ai−1,i = ai,i−1 =

ˆ x i+1
2

x i−1
2

φ′i
2
(x)φ′i−1

2

(x)dx =
−8

3h

ai−2,i = ai,i−2 =

ˆ x i
2

x i−1
2

φ′i
2
(x)φ′i−2

2

(x)dx =
1

3h

You can check this because summing the rows gives a zero vector.

f = Phf =

2M+1∑
j=1

f(x j
2
)φ j

2
(x) =

2M+1∑
j=1,odd

f(x j
2
)φ j

2
(x) +

2M∑
j=2,even

f(x j
2
)φ j

2
(x)

Odd pieces: For odd i,

fi =

2M+1∑
j=1,odd

f(x j
2
)

ˆ x i+1
2

x i−1
2

φ j
2
(x)φ i

2
(x) =f(x i−1

2
)

ˆ x i+1
2

x i−1
2

φ i−1
2

(x)φ i
2
(x)dx

+ f(x i
2
)

ˆ x i+1
2

x i−1
2

(φ i
2
(x))2dx

+ f(x i+1
2

)

ˆ x i+1
2

x i−1
2

φ i+1
2

(x)φ i
2
(x)dx

so
fi =

h

15

(
f(x i−1

2
) + 8f(x i

2
) + f(x i+1

2
)
)

Even pieces: For even i,

fi =
h

30

(
−f(x i−2

2
) + 2f(x i−1

2
) + 8f(x i

2
) + 2f(x i+1

2
)− f(x i+2

2
)
)

This produces a matrix problem Au = f , where A is SPD.

5.0.3 Error Analysis

Energy norm error
‖u− U‖E ≤ ‖u− v‖E , ∀ v ∈ V

2
h

Take v = Phu, then
‖u− U‖E ≤ ‖u− Phu‖E ≤ ch

2‖u′′′‖
L2 norm error:

‖u− U‖L2 ≤ ch3‖u′′′‖

5



Pierson Guthrey
pguthrey@iastate.edu

6 Beam Equation{
u(4) = f 0 < x < 1

u(0) = u(1) = u′(0) = u′(1) = 0
(BEAM BVP)

u and u′ are specified at the boundary, thus are essential boundary conditions. v and v′ will be strongly
enforce. So let

V =
{
v ∈ H2 : v(0) = v(1) = v′(0) = v′(1) = 0

}
So we have our Variational Problem

ˆ 1

0

vu′′′′dx =

ˆ 1

0

vfdx ⇐⇒
ˆ 1

0

u′′v′′dx =

ˆ 1

0

fvdx(BEAM VAR)

Recasting this as an energy minimization, we define the functional

F [w] =
1

2

ˆ 1

0

(w′′)2dx−
ˆ 1

0

fwdx

So we seek u ∈ V such that
F [u] ≤ F [v] , ∀ v ∈ V (BEAM MIN)

Assume w = u+ v, v ∈ V .

F [w] = F [u+ v] = F [u] +
1

2

ˆ 1

0

(v′′)2dx+

ˆ 1

0

u′′v′′dx−
ˆ 1

0

fvdx = F [u] +
1

2

ˆ 1

0

(v′′)2dx ≥ F [u]

So minimum energy is achieved with
´ 1

0
(v′′)2dx = 0 which with the boundary conditions implies v(x) = 0.

6.1 cG(3) Method

The regularity condition of our V for our Beam Variational problem is continuously differentiable functions.
Thus we need cubics in order to match the values and derivatives of neighboring solutions (4 conditions
implies 4 coefficients).

V 3
h =

{
v ∈ V : v|kj = aj + bjx+ cjx

2 + djx
3
}

So our first basis function is (recall hj = xj − xj−1)

φ
(1)
j (x) =


3h−2

j (x− xj−1)2 − 2h−3
j (x− xj−1)3 xj−1 ≤ x ≤ xj

3h−2
j+1(x− xj+1)2 + 2h−3

j+1(x− xj+1)3 xj ≤ x ≤ xj+1

0 otherwise

And we note

(φ
(1)
j (x))′ =


6h−2

j (x− xj−1)− 6h−3
j (x− xj−1)2 xj−1 ≤ x ≤ xj

6h−2
j+1(x− xj−1) + 6h−3

j+1(x− xj+1)2 xj ≤ x ≤ xj+1

0 otherwise

Note that

• φ(1)
j (x) ∈ C1 [0, 1], φ(1)

j (x) /∈ C2 [0, 1]

• φ(1)
j (xk) = δjk, (φ

(1)
j )′(xk) = 0
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Our second basis function is

φ
(2)
j (x) =


−h−1

j (x− xj−1)2 + h−2
j (x− xj−1)3 xj−1 ≤ x ≤ xj

h−1
j+1(x− xj+1)2 + h−2

j+1(x− xj+1)3 xj ≤ x ≤ xj+1

0 otherwise

And we note

(φ
(2)
j (x))′ =


−2h−1

j (x− xj−1) + 3h−2
j (x− xj−1)2 xj−1 ≤ x ≤ xj

2h−1
j+1(x− xj+1) + 3h−2

j+1(x− xj+1)2 xj ≤ x ≤ xj+1

0 otherwise

Note that

• φ(2)
j (x) ∈ C1 [0, 1], φ(2)

j (x) /∈ C2 [0, 1]

• φ(2)
j (xk) = 0, (φ

(2)
j )′(xk) = δkj

So we have
V 3
h = span

{
φ

(1)
1 , ..., φ

(1)
M , φ

(2)
1 , ..., φ

(2)
M

}
So we express our trial function

U =

M∑
j=1

ξjφ
(1)
j (x) +

M∑
j=1

ηjφ
(2)
j (x)

Note

• U(xk) = ξk , U ′(xk) = ηk

So for any v ∈ V ,

Phv =

M∑
j=1

v(xj)φ
(1)
j (x) +

M∑
j=1

v′(xj)φ
(2)
j (x)

Plugging this into our variational problem,

i+1∑
j=i−1

ξj

ˆ xi+1

xi−1

(φ
(l)
i )′′(φ

(1)
j )′′dx+

i+1∑
j=i−1

ηj

ˆ xi+1

xi−1

(φ
(l)
i )′′(φ

(2)
j )′′dx = RHS

This results in a matrix equation

S~u∗ =

(
A C
−C B

)(
~ξ
~η

)
=

(
~f (1)

~f (2)

)

A is tridiagonal, symmetric:

A =
12

h3

 2 −1
−1 2 1
. . . . . . . . .


M×M

B is tridiagonal, symmetric:

B =
2

h

 4 1
1 4 1

. . . . . . . . .


M×M
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C is tridiagonal, antisymmetric defined by cij =
´ xi+1

xi−1
(φ

(1)
i )′′(φ

(2)
j )′′dx so it looks like

C =
6

h2

 0 1
−1 0 1
. . . . . . . . .


M×M

So S2M×2M is symmetric, positive definite thus invertible. For the right hand side of the equation, we project
f onto our test functions

Pvf =

M+1∑
j=0

f(xj)φ
(1)
j (x) +

M+1∑
j=0

f ′(xj)φ
(2)
j (x)

So then the RHS of the equation

RHS =
i+1∑

k=i−1

(
f(xk)

ˆ xi+1

xi−1

φ
(l)
i φ

(l)
k dx+ f ′(xk)

ˆ xi+1

xi−1

φ
(l)
i φ

(2)
k dx

)

Using quadrature,

f
(1)
i =

h

70
(9f(xi−1) + 52f(xi) + 9f(xi+1)) +

13h2

420
(f ′(xi−1)− f ′(xi+1))

f
(2)
i =

13h2

420
(f(xi+1)− f ′(xi−1))− h3

420
(3f ′(xi−1)− 8f ′(xi) + 3f ′(xi+1))

6.1.1 Error Analysis

We know our interpolation error goes as

‖u− Phu‖L2(0,1) ≤ C1h
4
∥∥∥u(4)

∥∥∥
L2

‖(u− Phu)′‖L2(0,1) ≤ C2h
3
∥∥∥u(4)

∥∥∥
L2

‖(u− Phu)′′‖L2(0,1) ≤ C3h
2
∥∥∥u(4)

∥∥∥
L2

A priori error estimate (Energy Norm) Exact variational problem is finding u ∈ V such that
ˆ 1

0

u′′v′′dx =

ˆ 1

0

fvdx ∀ v ∈ V

our approximate problem is finding U ′′ ∈ V 3
h

ˆ 1

0

U ′′v′′dx =

ˆ 1

0

fvdx ∀ v ∈ V

Subtracting, we get the Galerkin orthogonality condition
ˆ 1

0

(u− U)′′v′′dx = 0 ∀ v ∈ V 3
h

So then we see

‖u− U‖2E =

ˆ 1

0

((u− U)′′)2dx =

ˆ 1

0

(u− U)′′(u− v + v − U)′′dx
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Galerkin orthogonality tells us that this becomes

‖u− U‖2E =

ˆ 1

0

(u− U)′′(u− v)′′dx+

ˆ 1

0

(u− U)′′(v − U)′′dx =

ˆ 1

0

(u− U)′′(u− v)′′dx ∀ v ∈ V 3
h

So then
‖u− U‖2E ≤ ‖u− U‖E‖u− v‖E =⇒ ‖u− U‖E ≤ ‖u− v‖E ∀ V

3
h

So U is the optimal solution in V 3
h according to the energy norm. Take v = Phu.

‖u− U‖E ≤ ‖u− Phu‖E = ‖(u− Phu)′′‖L2 ≤ c1h2
∥∥∥u(4)

∥∥∥
L2

L2-norm error estimate Since Lu = u(4) with u(0) = u(1) = u′(0) = u′(1) = 0 is self adjoint, we consider
the dual problem.

φ(4) = e, φ(1) = φ(0) = φ′(1) = φ′(0)

‖e‖2L2 =

ˆ 1

0

e2dx =

ˆ 1

0

eφ(4)dx =

ˆ 1

0

e′′φ′′dx+ [eφ′′′ − e′φ′′]10 =⇒ ‖e‖2L2 =

ˆ 1

0

e′′φ′′dx

Using Galerkin Orthogonality, we see that since Phφ ∈ V 3
h ,

ˆ 1

0

e′′(Phφ)′′dx = 0 =⇒ ‖e‖2L2 =

ˆ 1

0

e′′(φ− Phφ)′′dx

‖e‖2L2 ≤ ‖e′′‖L2‖(φ− Phφ)′′‖L2 ≤ ch2
∥∥∥u(4)

∥∥∥
L2
ch2
∥∥∥φ(4)

∥∥∥
L2

= ch4
∥∥∥u(4)

∥∥∥
L2
ch2‖e‖L2

so
‖e‖L2 ≤ Ch4

∥∥∥u(4)
∥∥∥
L2

In practice, we see
|ξj − u(xj)| = O(h4), |ηj − u′(xj)| = O(h4)

7 Abstract Formulation of Conforming Methods for Elliptic Equa-
tions

Consider −(au′)′ = f, x ∈ (0, 1), u(0) = u(1) = 0. The variational problem takes v ∈ H1
0 and seeks a

solution to

B(u, v) = L(v), B(u, v) =

ˆ 1

0

au′v′dx (bilinear form) , L(v) =

ˆ 1

0

(linear functional)

which was equivalent to the energy minimization problem of finding u ∈ H1
0 such that F (u) ≤ F (v) for all

v ∈ H1
0 where the energy functional is defined as

F (v) =
1

2
B(v, v)− L(v) (energy functional)

So in general, consider the domain Ω ⊂ Rd.
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7.1 Lax-Milgram Theorem

missing notes Sept 25
So, given a bounded/continuous functional L(·) and a symmetric, bounded, coercive (elliptic?) bilinear

form B(u, v),

|L(v)| ≤ L̃‖v‖ B(u, v) = B(v, u) B(u, v) ≤ C‖u‖ ‖v‖ B(v, v) ≥ c‖v‖2

The variational problem has a unique solution u ∈ V with the property ‖u‖ ≤ L̃
c .

7.2 Abstract Conforming Method

Replace the space V by a finite dimensional subspace Vh ⊂ V . The general Finite Element Method is to
find a uh ∈ Vh such that B(uh, v) = L(v) for all v ∈ Vh.
The Lax Milgram theorem tells us there exists a unique solution uh ∈ Vh such that ‖uh‖V ≤

L̃
c .

Let {phii}Mi=1 be a basis for Vh where dim(Vh) = M . Let uh =
M∑
i=1

ξiφi , and then let v = φj for j = 1, ...,M ,

so
M∑
i=1

B(φi, φj)ξi = L(φj)

for j = 1, ...,M . Converting this to a linear algebra problem,

A~ξ =~f , aij = B(φi, φj)

We see that A is symmetric and positive definite.

• Note that this is independent of geometry and dimension!

7.2.1 Error

7.2.2 Cea’s Lemma

Let V be a Hilbert space and let Vh be a finite dimensional subspace. Given a bilinear form B and a linear
functional L satisfying the assumptions of Lax-Milgram, then let u be the solution to the variational probem
and let uh be the solution to the FEM problem, then

‖u− uh‖V ≤
C

c
‖u− v‖V ∀ v ∈ Vh

Thus, uh is the best possible approximation to u for all functions in Vh with respect to ‖·‖V .
Proof. Subtracing the FEM problem from the variational problem,

B(u, v)−B(uh, v) = 0 ∀ v ∈ Vh =⇒ B(u− uh, v) = 0 ∀ v ∈ Vh
Thus we have Galerkin orthogonality with respect to the inner product B(·, ·).

B(u− uh, u− uh) = B(u− uh, u− v + v − uh) = B(u− uh, u− v) ∀ v ∈ Vh
Since B(u− uh, v − uh) = 0 by Galerkin orthogonality.
Using the assumed properties of this bilinear form,

B(u− uh, u− v) ≤ C‖u− uh‖V ‖u− v‖V
and

c‖u− uh‖2V ≤ C‖u− uh‖V ‖u− v‖V
so

‖u− uh‖V ≤
C

c
‖u− v‖V

10
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Note: Error in ‖·‖V Let v = Phu. Therefore

‖u− uh‖V ≤
C

C
‖u− Phu‖V

where ‖u− Phu‖V is the interpolation error measured in ‖·‖V . So convergence occurs if ‖u− Phu‖V → 0
as h→ 0, M →∞.

Example Given the problem
−u′′ = f, u(0) = u(1) = 0

Let I = (0, 1), then V = H1
0 (I), B(u, v) = 〈u′, v′,=〉

´ 1

0
u′v′dx, L(v) = 〈f, v〉. B(·, ·) is clearly symmetric.

|B(u, v)| ≤ ‖u′‖L2(I)‖v
′‖L2(I) ≤ ‖u

′‖H1
0 (I)‖v

′‖H1
0 (I)

So B is bounded with C = 1. Now using Poincare

B(v, v) = ‖v′‖2L2 ≥
1

2

(
‖v‖L2(I) + ‖v′‖L2(I)

)
=

1

2
‖v‖2V

So B is coercive (V− ellpitic) with c = 1
2 . f is continuous since

|L(v)| = |〈f, v〉| ≤ ‖f‖L2(I)‖v‖L2(I)norm[L2(I)]f‖v‖V
Using previous results, a cG(1) method has

‖u− uh‖V ≤ 2‖u− Phu‖ ≤ c1h‖u′′‖L2(I)

Whereas a cG(2) method has
‖u− uh‖V ≤ c2h

2‖u′′′‖L2(I)

2D Example Consider the Poisson equation

−∆u = −(u,x,x + u,y,y) = f, x ∈ Ω ⊂ R2 u = 0, x ∈ ∂Ω

Assume f ∈ L2(Ω). The variational problem is

−
ˆ

Ω

v∆udx =

ˆ
Ω

fvdx

Using Green’s identities, this becomesˆ
Ω

∇v · ∇udx−
ˆ
∂Ω

v∇u · n̂ds =

ˆ
Ω

fvdx

If we take v = 0 on ∂Ω, then this is ˆ
Ω

∇v · ∇udx =

ˆ
Ω

fvdx

Thus we have our space V = H1
0 (Ω). So our variational problem is to find u ∈ V st B(u, v) = L(v) for all

v ∈ V where
B(u, v) =

ˆ ˆ
Ω

∇u · ∇vdxdy, L(v) =

ˆ ˆ
Ω

fvdxdy

and the energy is defined as F (w) = 1
2B(w,w)− L(w). We note B(·, ·) is continuous with C = 1 since

|B(u, v)| ≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖∇u‖H1
0
‖∇v‖H1

0

and it is coercive (V− elliptic) since

B(v, v) = ‖∇v‖2L2 ≥
1

2

(
C−2 |v|2H1

0
+ ‖∇v‖2L2

)
=

11
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7.3 Non-Conforming Methods

The two introduction probems are known as conforming methods. This is any method where we replace
the space V by a finite dimensional subspace Vh ⊂ V . Non-conforming methods have functions outside the
space V : Vh 6⊂ V .

Oct 2 Notes
u(4) = f, u(0) = u(1) = u′(0) = u′(1) = 0, I = (0, 1)

where f ∈ L2(I). So our test function space is V = H2
0(I) and our problem is

B(u, v) = 〈u′′, f ′′〉 = 〈f, v〉 = L(v)

B is bounded with C = 1, symmetric, and coercivity with c = 1
3 is proven via Poincare.

Cea’s lemma says for cG(3), we have the error estimate

‖u− uh‖H2(I) ≤ ch
2 |u|H4(I)

Biharmonic Equation

∆2u = uxxxx + 2uxxyy + uyyyy = f, x ∈ Ω, u|∂Ω = 0,∇u · n̂|∂Ω = 0

Multiply by v and integrate over Ω. ˆ
Ω

v∆2udx =

ˆ
Ω

fvdx

Using Green’s identity,
ˆ

Ω

v∆2udx−
ˆ

Ω

∆v∆udx =

ˆ
∂Ω

v(∇∆u · n̂)−∆u(∇v · n̂)ds

Or if v|∂Ω = 0, ∇v · n̂|∂Ω = 0,
ˆ

Ω

v∆2udx = B(u, v) =

ˆ
Ω

∆v∆udx =

ˆ
Ω

fvdx = L(v)

So our space will be V = H2
0, with energy

E [u] =
1

2
B(u, v)− L(v)

Our bilinear form is bounded, symmetric, and coercive (proved with ‖v‖H2 ≤
∥∥L2

∥∥
∆v

). Our functional for f
is bounded with L̃ = ‖f‖L2 .
For 2D, we need 5th order polyomials, thus a cG(5) method. So our approximate V (assuming Ω has a
polygon boundary) is

Vh =

v ∈ H2(Ω : v|kj =

m+l=5∑
m,l=0

almj xlym, v|∂̃Ω = 0,∇v · n̂|∂̃Ω = 0


We have 6 conditions

• v is continuous on 3 edges

• ∇v · n̂ is continuous on 3 edges

Error estimate from Cea’s lemma
‖u− uh‖H2(Ω) ≤ ch

2 |u|H4(Ω)
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8 2D Mesh Generation

Finite Element Methods have no inherent restriction on the mesh. The simplest and most flexible way to
handle the mesh is a simplex. This means a triangulation in 2D and tetrahedrals in 3D. A general simplex
is unstructured. Let Kh = {Kj}Mj=1 That is, the nodes don’t necessary lie along the grid points. Let

Xh = {(xi, yi)}Ni=1 be the set of nodes (vertices of the triangles) and let Sh = {sl}El=1 be the set of edges of
the triangles. Let hi be the longest edge of Kj and let h = max

1≤j≤M
hj , and let ρj be the diameter of the

largest circle inside Kj . A triangularization is regular if there exists a constant α > 0 independent of
h such that hj

ρj
<≤ α for all j.

8.1 Mesh Generation Part 1

Given points in R2, we must form a triangularization. For each point, we can assign an area of
influence known as the Voronoi Region Vi. Let X be a set of N points/nodes. For each ~xi ∈ X, the
Voronoi region is the set of points in R2 that are at least as close to ~xi as any other point in X.

Vi =
{
~x ∈ R2 : ‖~x− ~xi‖ ≤ ‖~x− ~xi‖ ∀ xj ∈ X

}
That is, it is a collection of half planes defined by the intersection of the half planesHij =

{
~x ∈ R2 : ‖~x− ~xi‖ ≤ ‖~x− ~xj‖

}
.

This forms a convex polygonal region Vi which is possibly unbounded.

• Every point in x ∈ R2 has at least one nearest point in X

• Two Voronoi regions lie on opposite sides of perpendicular bisector and they never share any
interior points. Thus points that belong to two or more regions must lie on a boundary.

• Voronoi regions will cover the entire plane.

• Voronoi regions along with their edges and vertices form the Voronoi diagram of X.

• For a given X, the Voronoi diagram is unique.

8.1.1 Delaunay Partition

Let X be a set of N points in R2. Let V be the Voronoi diagram of X. The Delaunay partition
is obtained by creating an edge between 2 points in X if and only if their Voronoi regions share a
boundary. Mostly, this creates triangles that share a common Voronoi vertex. In the degenerate, 4 or
more points share a common Voronoi vertex if the points are co-circular. Degeneracies can always
be converted into a triangularization by slicing. The Delauney Triangulation Th is the Delaunay
Partition of a set of N points in R2 with some strategy to convert degenerate elements into triangles.

• The Voronoi diagram and the Delaunay triangulation form a duality.

• For a given X, V is unique and Th is unique up to degeneracies.

• Th contains O(N) triangles for N points.

• Th maximizes the minimum angle.

• A circle that circumscribes any triangle in Th does not contain any ~x ∈ X in the interior of the
circle.

• In C, you can use software from www.qhull.org
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In MATLAB, you can create this via the command t=delaunay(p) which can be plotted via trimesh(t,p(:,1),p(:,2))
where p is your list of points. Your solution u can be plotted via trisurf(t,p(:,1),p(:,2),u). If N is the
number of nodes and M is the number of triangle, then t is an M ×3 array of positive integers where
for each t(i, j) i is the triangle index (1,...,M) and j is the node index (1,2,3). So the three vertices of
triangle k are p(t(k, 1), 1 : 2), p(t(k, 2), 1 : 2), p(t(k, 3), 1 : 2).

8.2 Mesh Generation Part 2

How do we define a domain? One idea: defined a function φ(x) and consider the level sets of φ. Let
the boundary be defined by the zero level set. As an example, consider

φ(x) = ‖x‖2 −R Ω =
{
x ∈ R2 : φ(x) < 0

}
∂Ω =

{
x ∈ R2 : φ(x) = 0

}
That is, the domain is a disc of radius R centered at the origin with the circle of radius R being the
boundary. The exterior of our domain are points such that φ(x) > 0. These level set functions are
non unique. For example, φ(x) = ‖x‖p−Rp for p ∈ N describe the same domain and boundary as the
above level set function. You can use different norms (even mixed norms) to make various shapes.
To make a square, use

φ(x) = ‖x‖∞ −R Ω =
{
x ∈ R2 : φ(x) < 0

}
∂Ω =

{
x ∈ R2 : φ(x) = 0

}
Boolean Operators Consider φ1(x) = ‖x‖ −R1, φ2(x) = ‖x‖ −R2

φ3(x) = min {φ1(x), φ2(x)}

This function produces a negative for any point in either set, so it is easy to see that if φ1 produces
Ω1 and φ2 produces Ω2, then Ω3 = Ω1 ∪ Ω2 and ∂Ω3 = {x : φ3(x) = 0}
Similarly,

φ3(x) = max {φ1(x), φ2(x)}

Produces the intersection of the domains. That is, Ω3 = Ω1 ∩ Ω2.

Signed Distance Function (SDF) Note: ∇φ(x)
‖∇φ‖ is a unit vector that is perpendicular to the level

curves of φ(x).
∇φ(x)

‖∇φ‖
|φ=0 = n̂, outward pointing unit normal on ∂Ω

So we let φ be a level set function. Noting that φ|∂Ω = 0, if

φ(x) =

{
−dist(x, ∂Ω) x ∈ Ω

dist(x, ∂Ω) x /∈ Ω

then φ(x) is called a signed distance function (SDF).
Example: Consider the annular region defined by 1 < r < 2. This can be defined by φ1(x) =
max {1− r, r − 2} or φ2 = (r − 1)(r − 2), but only φ(x) is a signed distance function.
If φ is an SDF then ‖∇φ‖ = 1 and therefore ∇φ|φ=0 is unit normal to ∂Ω. This is because if we have
the unit normal and unit tangent vectors to the curve defined by φ = 0, and φ = η, where η is the
outward pointing normal. Then

∇φ =

(
n̂
∂

∂η
+ t̂

∂

∂τ

)
φ = n̂ =⇒ ‖∇φ‖ = 1
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Example. Consider the circular disc of radius a. φ1(x) = r− a, φ2(x) = r3− a3 are both valid level set
functions for this, but only φ1(x) is the SDF since

∇φ1 =
x2 + y2

r2
= 1 φ2(x) = 9(r − a)4 6= 1

Let be an SDF. If we want to take any point in R2 and project it onto the point y ∈ ∂Ω that is closest
to ~x, we can use ~y (point on ∂Ω = ~x − φ(~x)∇φ(~x) (starting point- shift amount *unit direction) for
k = 0, 1, 2, ....
If a point is equidistant from two points on the boundary, then we have an undefined gradient. In
this case, we can project ~x to y ∈ ∂Ω via a fixed point iteration

~yk+1 = ~yk − ψ(~y)
∇ψ(~yk)

‖∇ψ(~yk)‖
, ~y0 = ~x

8.3 Mesh Generation Part 3

Given a level set function φ that describes Ω that may or may not be an SDF, how do we generate a
triangulation of Ω with some points guaranteed to be on ∂Ω.

8.4 FEM for 2D Poisson

Consider the PDE:
−∇ · (∇u) = f, x ∈ Ω u = 0, x ∈ ∂Ω

The variational problem is: Find u ∈ V such that
ˆ ˆ

Ω

∇u · ∇vd~x =

ˆ ˆ
Ω

fvd~x

for all v ∈ V , where V = H1
0.

Our approximate Vh is Vh =
{
v ∈ V : v|kj = aj + bjx+ cjy

}
since our elements are triangles. We can

let
v(x1, y1) = v1 v(x2, y2) = v2 v(x3, y3) = v3

And then set up the Vandermonde matrix as such: 1 x1 y1

1 x2 y2

1 x3 y3

 a
b
c

 =

 v1

v2

v3


The basis functions φi have nodes at (xi, yi) for i = 1, ..., N and we want them to have the following
properties

• φi(xk, yk) = δik

• φi|kj should be linear in x and y

• suppφi is all triangular elements for which (xi, yi) is a vertex

• φi is continuous on Ω (automatically satisfied by previous properties)

So we can write our basis

v(x, y) =

N∑
i=1

v(xi, yi)φi(x, y)
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So our finite element problem is to find U ∈ V 1
h s.t.

ˆ ˆ
Ω

∇U · ∇vd~x =

ˆ ˆ
Ω

fvd~x ∀ v ∈ V 1
h

Let U =
N∑
j=1

ξjφj(x, y) and v = φi for i = 1, .., N

M∑
i=1

ξi

ˆ ˆ
Ω

∇φi · ∇φjd~x =

ˆ ˆ
Ω

fφjd~x =
∑
k

ˆ ˆ
k

fφjd~x

where we handle the right hand side via O(h2) numerical integration∑
k

ˆ ˆ
k

fφjd~x =
1

3
Ak(f(~x1)φi(~x1) + f(~x2)φi(~x2) + f(~x3)φ(~x3))

where Ak is the area of element K and ~xi are the vertices of element K.

8.4.1 Poisson Eqn on the Unit square [0, 1]× [0, 1]

For a uniform Triangulation, we fill the unit square with squares of side length h and draw diagonals
from northwest to southeast to obtain the triangular elements. We can index the interior nodes
1, ...,m2 where the grid spacing is h = ∆x = ∆y = 1

m+1 . The number of unknowns is equal to the
number of interior nodes which is N = m2. The basis vanishes on the boundary, so we don’t include
those as unknowns.

m2∑
j=1

ξj 〈∇φi,∇φj〉 = 〈f, φi〉

for i = 1, ...,m2. So let’s build the stiffness matrix.

• If i = j, aii = 〈∇φi,∇φi〉 =
´ ´

Li
‖∇φi‖2d~x where Li is the support of φi. We end up integrating

over 6 triangular elements. On each one, if φ|Tk
= ak + bkx + cky then ∇φ|Tk

=

(
bk
ck

)
so

norm∇φi2 = (b2k + c2k) and if the area of each triangle is Ak = 1
2h

2,
ˆ ˆ

Tk

‖∇φi‖2d~x =
1

2
h2
(
b2k + c2k

)
For each triangle we just need to find bk and ck. We can do this for a generic setup.

After the details, we get that aii = 4.
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• If j = i−m then the overlap is T1andT6.
ˆ ˆ

T1

〈∇φi,∇φi−m〉 d~x =
1

2
h2(aα+ bβ) = −1

2

ˆ ˆ
T6

〈∇φi,∇φi−m〉 d~x = −1

2

So ai,i−m = −1

• j = i+m. By symmetry, ai,i+m = −1

• j = i−m+ 1: overlap is T1 and T2. For each of these, we end up with integration of orthogonal
elements, so ai,i−m+1 = 0

• j = i+m+ 1: by symmetry ai,i+m+1 = 0

• ai,i+1 = −1

• ai,i−1 = −1

Therefore we have the linear system Aξ = b where A is N × N (recall N = m2) and symmetric,
positive definite. For the case N = 9,

A =

 D −I
−I D −I

−I D

 D =

 4 −1
−1 4 −1

−1 4


So we see this is SPD and block diagonal. The Cholesky factorization followed by forward and
backward substitution provides a fast way to do this. Another option is the conjugate gradient
method (pcg in MATLAB)
For the RHS, bi = 〈f, φi〉. This involves an integral over six triangles.

bi =

ˆ ˆ
T1

+...+

ˆ ˆ
T6

fφidx

We employ a quadrature

bi =

6∑
k=1

h2

6
(f(xi)φi(xi) + f(xj)φi(xj) + f(xl)φi(xl))

Which when we use φi(xj) = δij , the simplifies to

bi =

6∑
k=1

h2

6
f(xi) = h2f(xi)

This is O(h2), same as FDM.

Arbitrary Geometry What if we have an arbitrary geometry? We need to produce a list of nodes
p(1 : N, 1 : 2) and a list of triangles t(1 : M, 1 : 3). Assume that P has been sorted so that if NIN
is the number of interior nodes, p(1 : NIN, 1 : 2) are the interior nodes p(NIN + 1 : N, 1 : 2) are the
boundary nodes. This is true for the course web code. Check ’assemblestiff’ and ’assembleRHS’
for these procedures.
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Nonhomogenous Dirichlet BCs

−∇ · (∇u) = f, x ∈ Ω u = g(x), x ∈ ∂Ω

We consider Vg =
{
v ∈ H1, v = g ∀ x ∈ Ω

}
The variational problem becomes: Find u ∈ Vg st 〈∇u,∇v〉 =

〈f, v〉 for all v ∈ V0. The FEM becomes to let

U =
∑

Nj∈∂Ω

g(Nj)φj(x) +
∑

Nj∈Ω\∂Ω

where Nj = (xj , yj) are the coordinates for the jth node. Therefore we need to solve∑
Nj∈Ω\∂Ω

ξ 〈∇φi,∇φj〉 = 〈f, φi〉 −
∑

Nj∈∂Ω

g(Nj)φj(x)

where {i : Ni ∈ Ω \ ∂Ω}

Robin and Neumann BCs

−∇ · (∇u) = f, x ∈ Ω u = g(x), x ∈ ∂Ω1, ∇u · n̂+ κu = h(x), x ∈ ∂Ω2,

where ∂Ω = ∂Ω1 + ∂Ω2, n̂ is the outward pointing normal, and κ ≥ 0.
The variational problem is

〈f, v〉 = −〈∇ · ∇u, v〉
Using Green’s identities,

〈f, v〉 = 〈∇u,∇v〉 −
˛
∂Ω

∇u · n̂vds

or
〈f, v〉 = 〈∇u,∇v〉 −

˛
∂Ω1

∇u · n̂vds−
˛
∂Ω2

∇u · n̂vds

We let our test functions be zero on ∂Ω1, that is v(x) = 0, x ∈ ∂Ω1, and let Vg =
{
v ∈ H1(Ω) : v = g, x ∈ ∂Ω1

}
.

So our variational problem is to find u ∈ Vg st

〈f, v〉 = 〈∇u,∇v〉 −
˛
∂Ω2

(h− κu) · n̂vds

or rather
〈f, v〉+

˛
∂Ω2

hvds = 〈∇u,∇v〉 −
˛
∂Ω2

κuvds

for all v ∈ V0.

Error Analysis Homogenous Dirichlet BCs. Recall Cea’s lemma.

‖u− uh‖H1(Ω) ≤ C‖u− v‖H1 ∀ V ∈ Vh

Let v = Phu and use ‖u− Phu‖H1 ≤ Ch |u|H2 (essentially, the energy norm estimate), where

|v|2H2 =

ˆ ˆ
Ω

(vxx)2 + 2(vxy)2 + (vyy)2d~x

Regarding the poisson equation, if either Ω is a convex polygon or if ∂Ω is a smooth curve, then the
solution to the weak form of the Poisson equation on Ω satisfies

‖u‖H2(Ω) ≤ C‖f‖L2(Ω)
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Error Estimate Let H be a Hilbert space with the norm ‖‖H and a scalar product 〈·, ·〉. Let the
sobolev embedding V into H (more regular into less regular) be continuous:

‖v‖H ≤ ‖v‖V
Let B(u, v) be a symmetric, bounded, V-ellpitic bilinear form with

B(v, v) ≥ β∗‖v‖2V |B(u, v)| ≤ β∗‖u‖V ‖v‖V
Let L(·) be a linear functional that is bounded with |L(v)| ≤ L̃‖v‖V . Let u ∈ V and un ∈ Vh be solutions
to B(u, v) = L(v) and B(un, v) = L(v) respectively. Then

‖u− uh‖H ≤ C‖u− uh‖V sup
ψ∈H\{0}

inf
v∈Vh

‖φ− v‖V
‖ψ‖H

where for a given ψ ∈ H, φ ∈ V is the solution to B(φ,w) = 〈ψ,w〉 for all w ∈ V (the dual problem).
The ‖·‖H of a function f ∈ H can be written as

‖f‖H = sup
ψ∈H\{0}

〈ψ, f〉
‖ψ‖H

Because a function u ∈ V is also in H, and because u− uh ∈ V , we get

‖u− uh‖H = sup
ψ∈H\{0}

〈ψ, u− uh〉
‖ψ‖H

where (−∆φ = ψ) But

〈u− uh, ψ〉 = B(u− un, φ) = B(u− un, φ)−B(u− uh, v)

(the last term is zero by Galerkin orthogonality) where v ∈ Vh. so then

|〈u− uh, ψ〉| = |B(u− un, φ− v)| ≤ C‖u− un‖V ‖φ− v‖V = C‖u− un‖V inf
v∈Vh

‖φ− v‖V

by boundedness of B(·, ·) Therefore we use this in place of 〈ψ, f〉 in the above to get the desired
result.

L2 Error Estimate for cG(1) on 2D poisson Eqn w/ Homogenous Dirichlet BC Let u ∈ H1
0 satisfy

〈∇u,∇v〉 = 〈f, v〉 for all v ∈ H1
0 . Let V 1

h =
{
v ∈ H1

0 : v|K = P1(k), k ∈ Th
}

, where Th is a triangulation of
Ω that for every h > 0 satisfy mesh regularity condition:

(longest edge of K)
(diameter of largest inscribed circle of K)

≤ α ∀ K ∈ Th

Let uh ∈ V 1
h satisfy 〈∇uh,∇v〉 = 〈f, v〉 for all v ∈ V 1

h then ‖u− uh‖L2 ≤ ch2 |u|H2(Ω).
Proof: Using the previous lemma with V = H1 and H = L2,

‖u− uh‖L2 ≤ c1‖u− uh‖H1 sup
ψ∈L2\{0}

inf
v∈V 1

h

‖φ− v‖H1

‖ψ‖L2

ψ is RHS of the dual problem B(φ,w) = 〈ψ,w〉 but by the previous theoprem ‖φ‖H2 ≤ C2‖ψ‖L2 ,
‖ψ‖L2 ≥ c−1

2 ‖φ‖H2 and inf
v∈V 1

h

‖φ− v‖ ≤ ‖φ− Phφ‖H2 ≤ c3h‖φ‖H2 .

‖u− uh‖L2 ≤ c1c2c3h‖u− Phu‖H1 sup
ψ∈L2\{0}

‖φ‖H2

‖φ‖H2

so
‖u− uh‖L2 ≤ ch‖u− uh‖H1 ≤ ch2 |u|H2
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9 1D Heat Equation
ut − uxx = 0 0 < x < 1, 0 < t < T

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x), 0 < x < 1

Exact solution is

u(x, t) =

∞∑
k=1

ake
−k2π2t sin (kπx) ak =

√
2

π

ˆ 1

0

u0(x) sin(kπy)dy

If u0 ∈ L2(0, 1) then the series converges uniformly for t > 0.

Stability Estimates All nodes decay:

‖u(t, ·)‖L2(0,1) ≤ ‖u0‖L2(0,1) ∀ 0 < t < T

All nodes of the t-derivative decay

‖ut(t, ·)‖L2(0,1) ≤
c

t
‖u0‖L2(0,1) ∀ 0 < t < T

9.1 Semi-Discrete FEM

Let Ω ⊂ R2.

ut −∆u = f (0, T ]× Ω u = 0, x ∈ (0, T ]× ∂Ω u(0, ~x) = u0(~x), x ∈ Ω

Let V = H1
0(Ω). Seek u ∈ (0, T ]→ V such that

〈ut, v〉+ 〈∇u,∇v〉 = 〈f, v〉 ∀ v ∈ V, t ∈ (0, T ]

with
〈u(0), v〉 = 〈u0, v〉 ∀ v ∈ V, t ∈ (0, T ]

So then our Semi-Discrete FEM lets us replace V by Vh ⊂ V . Let φ1(~x), ..., φN (~x) be a basis for Vh.
Then

u(t, ~x) =

N∑
k=1

uj(t)φN (~c)

Which gives rise to a linear system of ODES once we put this into the variational problem

N∑
k=1

〈φi, φj〉 u̇j +

N∑
k=1

〈∇φi,∇φj〉uj = 〈f, φi〉 i = 1, ..., N

along with the initial conditions

N∑
k=1

〈φi, φj〉uj(0) = 〈u0, φi〉 i = 1, ..., N

20



9.1 Semi-Discrete FEM
Pierson Guthrey

pguthrey@iastate.edu

This can be expressed as a matrix equation with Gij = 〈φi, φj〉 (known as the mass matrix, which is
SPD) along with the usual stiffness matrix Aij = 〈∇φi,∇φj〉 and the forcing vector fi = 〈f, φi〉. So we
have the linear constant coefficient system of ODES{

G~̇u +A~u =~f

G~u(0) = ~u0

We can solve this using the Cholesky Factorization G = RTR where R is upper triangular. Let
~w = R~u so that ~u = R−1~w, so we now have the system{

~̇w + (R−1)TAR−1~w = (R−1)T~f

~w(0) = (R−1)T ~u0

Now let Â = (R−1)TAR−1 and ~g = (R−1)T~f . Â is symmetric because ÂT = ((R−1)TAR−1)T =
(R−1)TAR−1 = Â and is positive definite because for ~w 6= 0

~wT Â~w = ~wT (R−1)TA(R−1)~w = ~uTA~u > 0

{
~̇w + Â~w = ~g

~w(0) = (R−1)T ~u0

So we can solve this exactly in time. However computationally, this is ludicrously expensive and
impractical since we already have error from the FEM anyway.

~w(t) = e−Ât~w(0) +

ˆ t

0

e−Â(t−s)~g(s)ds

Error Analysis for ? (missing notes 11/4)

‖u(t)− uh(t)‖L2 ≤ ‖u0 − Phu0‖L2 + ch2 (‖?‖ )

Proof: Let e(t) = u(t)− uh(t) and write

e(t) = (u(t)−Rhu(t)) + (Rhu(t)− uh(t)) = ρ(t) + θ(t)

where ρ(t) ∈ V and θ(t) ∈ V 1
h . From the elliptic error analysis: ‖ρ(t)‖L2 ≤ ch2‖u(t)‖H2 but u(t) =

u(0) +
´ t

0
ut(s)ds. Therefore

‖ρ(t)‖L2 ≤ ch2

(
‖u0‖L2 +

ˆ t

0

‖ut(s)‖H2ds

)
We also note that

〈ut, v〉+ 〈∇u,∇v〉 = 〈f, v〉 ∀ v ∈ V 1
h ⊂ V

using the Ritz projection: 〈∇u,∇v〉 = 〈∇Rhu,∇v〉. Therefore

〈ut −Rhut +Rhut, v〉+ 〈∇Rhu,∇v〉 = 〈f, v〉 ∀ v ∈ V 1
h

So from this we subtract our FEM 〈uh,t, v〉 + 〈∇uh,∇v〉 = 〈f, v〉 for all v ∈ V 1
h so recalling ρ = u −

Rhu, θ = Rhu− uh
〈ρt, v〉+ 〈θt, v〉+ 〈∇θ,∇v〉 = 0
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for all v ∈ V 1
h . but θ ∈ V 1

h , so we can take v = θ:

〈θt, θ〉+ ‖∇θ‖2L2 = −〈ρt, θ〉

but
〈θt, θ〉 =

1

2

d

dt
‖θ(t)‖2L2 = ‖θ(t)‖L2

d

dt
‖θ(t)‖L2

also,
−〈ρt, θ〉 ≤ ‖ρt‖L2‖θ‖L2

Therefore
d

dt
‖θ(t)‖L2 ≤ ‖ρt‖L2

If we integrate from 0 to t

‖θ(t)‖L2 − ‖θ(0)‖L2 ≤
ˆ t

0

‖ρt(s)‖L2ds

or

‖θ(t)‖L2 ≤ ‖θ(0)‖L2 +

ˆ t

0

‖ρt(s)‖L2ds

But

‖θ(0)‖L2 = ‖Rhu0 − u0 + u0 − Phu0‖L2 ≤ ‖Rhu0 − u0‖L2 + ‖u0 − Phu0‖L2 ≤ ch2‖u0‖H2 + ‖u0 − Phu0‖L2

And
‖ρt‖L2 = ‖ut −Rhut‖L2 ≤ ch2‖ut‖H2

Recall that the ritz projection has the property 〈∇Rhu,∇v〉 =
∏
∇u∇v and the projection onto the

mesh has the property 〈uh, v〉 = 〈u, v〉.

‖θ(t)‖L2 ≤ ‖u0 − Phu0‖L2 + ch2

(
‖u0‖H2 +

ˆ t

0

‖ut(s)‖H2ds

)
‖ρ(t)‖L2 ≤ ch2

(
‖u0‖H2 +

ˆ t

0

‖ut(s)‖H2ds

)
‖u(t)− uh(t)‖L2 ≤ ‖ρ(t)‖L2‖θ(t)‖L2

Backward Euler Instead of solving exactly in time, we can use time stepping methods. Consider
the variational problem 〈

unh − u
n−1
h

dt
, v

〉
+ 〈∇unh,∇v〉 = 〈fn, v〉

for all v ∈ V h and for all n = 1, ...,K. where ∆t = T
K .〈

u0
h, v
〉

= 〈u0, v〉 ∀ v ∈ V h

unh =

N∑
j=1

unj φj v = φi ∀ i = 1, ..., N

In matrix form, we have our mass matrix G and stiffness matrix A

G = 〈φi, φj〉 A = 〈∇φi,∇φj〉 f = 〈f, φi〉 u0 = 〈u0, φi〉

Therefore
Gun −Gun−1 + ∆tAun = dtfn Gu0 = u0

or
(G+ dtA)un = Gun−1 + dtfn Gu0 = u0
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Stability Assume f = 0. Take v = unh in variational problem

〈unh, unh〉 −
〈
un−1
h , unh

〉
+ ∆t 〈∇unh,∇unh〉 = 0

‖unh‖
2
L2 −

〈
un−1
h , unh

〉
+ ∆t‖∇unh‖

2
L2 = 0

but
〈
un−1
h , unh

〉
≤
∥∥un−1

h

∥∥
L2‖unh‖L2 ≤ 1

2‖u
n
h‖

2
L2 + 1

2

∥∥un−1
h

∥∥
L2 so using this in the above formula,

‖unh‖L2 ≤
∥∥un−1

h

∥∥
L2 ≤ ... ≤

∥∥u0
0

∥∥
L2 ≤ ‖u0‖L2

So the Backward Euler Continuous Galerkin Method is (BEcG) is unconditionally L2 stable for any
∆t ≥ 0.

Theorem Condtions? notes 11/6/2014

‖unh − u(tn)‖L2 ≤ ch2

(
‖u0‖H2 +

ˆ tn

0

‖ut(s)‖H2ds

)
+ ∆t

ˆ tn

0

‖utt(s)‖L2ds

Note this means ‖unh − u(tn)‖L2 = O(h2 + ∆t), second order in space, first order in time.
Proof: Let ρ(t) = u(t)−Rhu(t). Then

u(tn)− uhn = e(tn) = u(tn)−Rhu(tn) +Rhu(tn)− uhn = ρ(tn) + θ(tn)

Note: θ is only defined at tn = n∆t for n = 1, ...,K, while ρ is defined for all t ∈ [0, T ] while ρ is defined
for all t ∈ [0, T ]. As in the semi-discrete case:

‖ρ(tn)‖L2 ≤ ch2

(
‖u0‖H2 +

ˆ tn

0

‖ut(s)‖H2ds

)

And the Ritz projection is 〈∇u,∇v〉 = 〈∇Rhu,∇v〉 for all v ∈ V 1
h . Therefore

〈ut, v〉+ 〈∇Rhu,∇v〉 = 〈f, v〉

or in the discrete case〈
Rh

u(tn)− u(tn−1)

∆t
, v

〉
+ 〈∇Rhu,∇v〉 = 〈f, v〉+ 〈wn, v〉 (STAR)

where wn = Rh
u(tn)−u(tn−1)

∆t − ut(tn). Note that this is true for all v ∈ V 1
h Now we introduce the FEM:〈

unh − u
n−1
h

∆t
, v

〉
+ 〈∇unh,∇v〉 = 〈f, v〉 ∀ v ∈ V 1

h

Subtract this from star, and define θ(tn) = Rhu(tn)− unh〈
θn − θn−1

∆t
, v

〉
+ 〈∇θn,∇v〉 = 〈wn, v〉

Let v = θn. So we have 〈
θn − θn−1

∆t
, θn
〉

+ 〈∇θn,∇θn〉 = 〈wn, θn〉

or
‖θn‖2L2 −

〈
θn, θn−1

〉
≤ ∆t‖wn‖L2‖θn‖L2

23



9.1 Semi-Discrete FEM
Pierson Guthrey

pguthrey@iastate.edu

but
〈
θn, θn−1

〉
≤ ‖θn‖L2

∥∥θn−1
∥∥
L2

‖θn‖L2 −
∥∥θn−1

∥∥
L2 ≤ ∆t‖wn‖L2

Summing this inequality from n = 1, ..., l,

∥∥θl∥∥
L2 −

∥∥θ0
∥∥
L2 ≤ ∆t

l∑
n=1

‖wn‖L2

now we write

wn = wn1 + wn2 = (Rh − I)

(
u(tn)− u(tn −∆t)

∆t

)
+

(
u(tn)− u(tn −∆t)

∆t
− ut(tn)

)
So then estimating each part,

wn1 = (Rh − I)
1

∆t

ˆ tn

tn−dt
ut(s)ds

or

‖wn1 ‖L2 =
1

∆t

ˆ tn

tn−dt
‖(Rh − I)ut(s)‖L2ds ≤

ch2

∆t

ˆ tn

tn−dt
‖ut(s)‖H2ds

so

∆t

l∑
n=1

‖wn1 ‖L2 ≤ ch2

ˆ tl

0

‖ut(s)‖H2ds

Also

∆twn2 = (u(tn)− u(tn −∆t)−∆tut(t
n)) =

ˆ tn

tn−dt
(tn−1 − s)utt(s)ds

Where z(t) = (tn−1 − t)utt(t) and

ˆ tn

tn−1

z(t)dt =

ˆ tn

tn−∆t

(tn−1 − s)utt(s)ds = −∆tut(t
n) +

ˆ tn

tn−1

ut(s)ds = −∆tut(t
n) + u(tn)− u(tn −∆t)

So since (tn−1 − s) ≤ ∆t

∆t

l∑
n=1

‖wn2 ‖ ≤ ∆t

ˆ tn

tn−dt
‖utt(s)‖L2ds

Lastly, we see∥∥θ0
∥∥
L2 =

∥∥Rhu0 − u0
h

∥∥
L2 =

∥∥Rhu0 − Phu0
∥∥
L2 ≤ ‖Rhu0 − u0‖L2 +

∥∥u0 − Phu0
∥∥
L2 ≤ ch2‖u0‖H2

Therefore

‖θn‖L2 ≤ ch2‖u0‖H2 + c2h
2

ˆ tn

0

‖ut(s)‖H2ds+ ∆t

ˆ tn

0

‖utt(s)‖L2ds

Finally,

‖unh − u(tn)‖L2 ≤ ‖θn‖L2 + ‖ρn‖L2 ≤ c3h2

(∥∥u0
∥∥
H2 +

ˆ tn

0

‖ut(s)‖H2ds

)
+ ∆t

ˆ tn

0

‖utt(s)‖L2ds
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9.2 Crank-Nicolson Method

9.3 Stiff Problems

9.4 Nonconfroming FEMs

Consider
−∇ · ∇u = f, x ∈ Ω, u = 0, x ∈ ∂Ω

Find u ∈ H1
0 (Ω) such that

〈∇u,∇v〉 = 〈f, v〉 ∀ v ∈ H1
0(Ω)

Conforming FEMs replace V by a finite dimensional subspace Vh such as Vh =
{
v ∈ H1

0v|k = ak + bkx+ cky
}

.
Nonconforming FEMs consider finite dimensional spaces that are not subspaces of V . For example,
the Crouzeix-Raviart element space (1973) is

Vh =
{
v ∈ L2(Ω) : v|k = ak + bkx+ cky,v is continuous at the midpoints of interior edges, and v=0 at the midpoint of the boundary edges

}
Note: Each element has 3 degrees of freedom and 3 constraints (otherwise the problem might be
ill-posed).
Clearly, Vh /∈ V and has less regularity than V . Therefore we need to reinterpret the Bilinear form as

B(u, v) =

ˆ ˆ
Ω

∇u · ∇vdx turns into Bh(u, v) =
∑
k∈Th

ˆ ˆ
K

∇u · ∇vdx

Note this Bh(·, ·) is symmetric, and

Bh(u, u) =
∑
k∈Th

‖∇u‖2L2(K) > 0, ∀ u ∈ Vh \ {0}

So our Variational problem is: Find uh such that∑
k∈Th

〈∇uh,∇v〉K = 〈f, v〉 ∀ v ∈ Vh

What is our new basis? Let ~ej denote that midpoint of edge j, where j = 1, ..., S, where S is the
number of edges. Let the edges be ordered such that j = 1, ..., Ŝ refer to the interior edges, and let
j = Ŝ, ..., S. Since u = 0 on the boundary,

φi(ej) = δij =⇒ uh =

Ŝ∑
j=1

ujφj

Use test functions v = φi for i = 1, ..., ŝ, so the matrix form is

A~u =~f , ~u = (u1, ..., uŜ)T

where fi = 〈f, φi〉, Aij = Bh(φi, φj). Symmetry of Bh implies symmetry of A. We also see

~vTA~v =

Ŝ∑
i=1

vi(A~v)i =

Ŝ∑
i=1

Ŝ∑
j=1

viAijvj =

Ŝ∑
i=1

Ŝ∑
j=1

viBh(φi, φj)vj

By linearity

~vTA~v = Bh(

Ŝ∑
i=1

viφi,

Ŝ∑
j=1

vjφj = Bh(vh, vh) =
∑
k∈Th

‖∇vh‖2L2(K) > 0 ∀ vh ∈ Vh \ {0}

Therefore A is SPD.
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9.4.1 L2 error estimate

‖u− uh‖L2(Ω) + h
∑
k∈Th

‖∇(u− uh)‖2L2(K) ≤ ch
2‖u‖H2

9.4.2 2D Biharmonic Eqn

∆2u = f, x ∈ Ω u = ∇u · n̂ = 0, x ∈ ∂
Let H2

0(Ω) =
{
v ∈ H2(Ω) : v = ∇u · n̂ = 0, x ∈ ∂Ω

}
. The variational problem is to find u ∈ H2

0 (Ω) such
that

〈∇u,∇v〉 = 〈f, v〉 ∀ v ∈ H2
0(Ω)

In 2D on triangles, the minimum degree polynomial in H2
0(Ω) is 5. So we consider the modified

bilinear form (the one for the plate problem). Let

B̃(u, v) = B(u, v) + (1− σ)S(u, v) , where B(u, v) = 〈∆u,∆v〉L(Ω)

where 0 < σ ≤ 1
2 is Poisson’s ratio. And S(u, v) = −〈∆u,∆v〉 + 〈uxx, vxx〉 + 2 〈uxy, vxy〉 + 〈uyy, vyy〉.

Using appropriate integration by parts,

S(u, v) =

˛
∂Ω

(
∂2u

∂n̂∂t̂
· ∂v
∂t̂
− ∂2u

∂t̂2
∂v

∂n̂

)
ds

where ∂v
∂n̂ = ∇v · n̂ and ∂v

∂t̂
= ∇v · t̂. n̂ is unit normal to ∂Ω. t̂ is unit tangent to ∂Ω.

∂2u

∂n̂∂t̂
=

2∑
i=1

2∑
j=1

???

∂2u

∂t̂2
=

2∑
i=1

2∑
j=1

???

For v ∈ H2
0 (Ω), v = 0 on ∂Ω so ∇v · t̂ = 0 on ∂Ω. ∇v · n̂ = 0 on ∂Ω. Therefore S(u, v) = 0. Using IBP,

u ∈ H3(Ω), v ∈ H2(Ω), something?
Therefore the modified variational problem is to find u ∈ H2

0 (Ω) such that

B̃(u, v) = 〈f, v〉

Note that B̃(·, ·) is symmetric. It is also continuous since∣∣∣B̃(u, v)
∣∣∣ ≤ σ‖∆u‖L2‖∆v‖L2 + (1− σ)‖u‖H2‖v‖H2 ≤ σ‖u‖L2‖v‖L2 + (1− σ)‖u‖H2‖v‖H2 ≤ ‖u‖H2‖v‖H2

This bilinear form is also V−elliptic

B̃(u, v) = σ‖∆v‖2L2 + (1− σ) |v|2H2 ≥ β∗‖v‖2H2

Therefore the modified variational problem satisfies the Lax-Milgram Theorem. In fact, if u ∈ H3(Ω),
then solutions with B(·, ·) and B̃(·, ·) will be identical.

The Equivalent minimization problem is to find u ∈ H2
0 st

F̃ (u) ≤ F̃ (v) ∀ v ∈ H2
0 (Ω)

where
F̃ (v) =

1

2
B̃(v, v)− 〈f, v〉
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The nonconforming FEM with the (Morley Element) is:
Let Vh be the set v ∈ L2(Ω) such that

• vk = P2(k), that is v|k = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2

• v is continuous on interior nodes

• v = 0 on bdy nodes

• ∇v · n̂ is continuous on the midpoints of interior edges

• ∇v · n̂ = 0 on the midpoints of the bdy edges

Let
B̃h(u, v) =

∑
k∈Th

σ 〈∆u,∆v〉K + (1− σ)
(
〈uxx, vxx〉K + 2 〈uxy, vxy〉K + 〈uyy, vyy〉K

)

The Variational Problem is to find uh ∈ Vh such that

B̃h(u, v) = 〈f, v〉 ∀ v ∈ Vh

This is solvable because if we let the discrete norm on this space be

‖vh‖2h =
∑(

〈vxx, vxx〉K + 2 〈vxy, vxy〉K + 〈vyy, vyy〉K
)

then
B̃h(u, u) =

∑
k∈Th

σ 〈∆uh,∆uh〉+ (1− σ)‖uh‖2h > 1− σ)‖uh‖2h ∀ u ∈ Vh

So B̃h(·, ·) is symmetric and positive definite as long as 0 < σ < 1.

The L2-error analysis prove by Lascauz and Le Saint in 1978.

‖u− uh‖L2(Ω) ≤ ch
2
(
|u|H3(Ω) + h|u|H4(Ω)

)
Note: The Morley element methid is O(h2) accurate and has far fewer degrees of freedom than the
O(h4) H2

0(Ω) conforming FEM.
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Lemma: Strang’s Second Lemma

• Let V be a Hilbert space such that V = Hr0(Ω) for some integer r > 0. Let B(·, ·) : V × V → R be
a bilinear form that satisfies assumptions of Lax-Milgram. Let L : V → R be a linear functional
bounded on ‖·‖V .

• Let Vh be a finite dimensional space with norm ‖·‖h. Let B̃h(·, ·) : Vh × Vh → R be a discrete
bilinear form that satisfies

– Bh(u, v) = Bh(v, u) for all u, v ∈ Vh
– |Bh(u, v)| ≤ β∗‖u‖h‖v‖h for all u, v ∈ Vh ∪ V (both spaces!)

– Bh(u, u) ≥ β∗‖u‖2h for all u ∈ Vh (analogous to V−ellipticity)

where β∗, β∗ > 0 and are indepenedent of h. Let Lh : Vh → R be a linear functional bounded in ‖·‖h.
If u ∈ V is the unique solution to B(u, v) = 〈f, v〉 for all v ∈ V and uh ∈ Vh is the unique solution of
Bh(uh, v) = Lh(v) for all v ∈ Vh, then there exists a constant c > 0 independent of h such that

‖u− uh‖h ≤ c

(
inf
v∈Vh

‖u− uh‖h + sup
w∈Vh,w 6=0

|Bh(u,w)− Lh(w)|
‖w‖h

)

This is a generalization of Cea’s lemma. The extra (second) piece comes from the fact that we
are using a modified bilinear form that isn’t exactly correct. This second piece vanishes in the
conforming methods, and is known as the consistency error. The first term is the approximation
error.
Proof of this error estimate: For any v ∈ Vh:

β∗‖uh − v‖2h ≤ Bh(uh − v, uh − v) = Bh(uh − u+ u− v, uh − v)

≤ Bh(u− v, uh − v) +Bh(uh, uh − v)−Bh(u, uh − v)

≤ Bh(u− v, uh − v) + Lh(uh − v)−Bh(u, uh − v)

β∗‖uh − v‖h ≤
Bh(u− v, uh − v)

‖uh − v‖h
+
Lh(w)−Bh(u,w)

‖w‖h

≤ β∗‖u− v‖h + sup
w∈Vh,w 6=0

Lh(w)−Bh(u,w)

‖w‖h

β∗ (‖uh − v‖h + ‖u− v‖h) ≤ (β∗ + β∗)‖u− v‖h + sup
w∈Vh,w 6=0

Lh(w)−Bh(u,w)

‖w‖h

Using the triangle inequality, on the left hand side, we have

β∗‖uh − u‖h ≤ (β∗ + β∗)‖u− v‖h + sup
w∈Vh,w 6=0

Lh(w)−Bh(u,w)

‖w‖h

‖uh − u‖h ≤ c

(
‖u− v‖h + sup

w∈Vh,w 6=0

Lh(w)−Bh(u,w)

‖w‖h

)

‖uh − u‖h ≤ c

(
inf
v∈Vh

‖u− v‖h + sup
w∈Vh,w 6=0

Lh(w)−Bh(u,w)

‖w‖h

)

Where taking the infimum comes from the fact that the second to last line is true for all v ∈ Vh.
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10 Mixed FEM

For the Poisson problem, ˆ 1

0

wu′dx =

ˆ 1

0

fwdx

Variational Problem : Find u ∈ V and p ∈W such that u = −p′ and
ˆ 1

0

uvdx =

ˆ 1

0

pv′dx

ˆ 1

0

wu′dx =

ˆ 1

0

fwdx ∀ v ∈ V,w ∈W

This seems backwards, u is more regular than p.
Claim: The Variational Problem is equivalent to a saddle-point problem (as opposed to a minimiza-
tion). We want to find u ∈ V and p ∈W such that

F (u,w) ≤ F (u, p) ≤ F (v, p) ∀ v ∈ V,w ∈W

where

F (v, w) =
1

2

ˆ 1

0

v2dx−
ˆ 1

0

v′wdx+

ˆ 1

0

fwdx

That is we maximize with respect to the second argument and minimize with respect to the first
argument.

Proof of Problem equivalence Suppose u ∈ V and p ∈W are solutions to the variational problem

〈u, v〉 − 〈v′, p〉 = 0 ∀ v ∈ V 〈u′, w〉 = 〈f, w〉 ∀ w ∈W

Let τ = v − u ∈ V . If F (v, w) = 1
2 〈v, v〉 − 〈v

′, w〉+ 〈f, w〉,

F (v, p) =F (u+ τ, p) =
1

2
〈u+ τ, u+ τ〉 − 〈u′ + τ ′, w〉+ 〈f, w〉

=
1

2
〈u, u〉+ 〈u, τ〉+

1

2
〈τ, τ〉

− 〈u′, w〉 − 〈τ ′, w〉+ 〈f, w〉

=

(
1

2
〈u, u〉 − 〈u′, p〉+ 〈f, p〉

)
+ (〈u, τ〉 − 〈τ ′, p〉) +

1

2
〈τ, τ〉

=F (u, p) +
1

2
〈τ, τ〉

Since the second set of parentheses disappear via the variational problem. Therefore

F (v, p) ≥ F (u, p) ∀ v ∈ V

For the second part of this proof, let τ = w − p ∈W ,

F (u,w) = F (u, p+ τ) = F (u, p)− 〈u′, τ〉+ 〈f, τ〉 = F (u, p)

therefore
F (u, p+ τ) = F (u, p)

So then we only need to minimize in the first argument. The second argument will not change the
energy at this minimum for the Poisson problem.

F (u,w) = F (u, p) ≤ F (v, p) ∀ v ∈ V,w ∈W
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Now we need to prove the converse equivalence. Suppose u ∈ V and p ∈W satisfy

F (u,w) ≤ F (u, p) ≤ F (v, p) ∀ v ∈ V,w ∈W

So for a minimizer u, let G be defined as

F (u, p) ≤ F (u+ εv, p) = G(ε) ∀ v ∈ V, ε ∈ R

So then
G(ε) = F (u+ εv, p) =

1

2
〈u, u〉+ ε 〈u, v〉+

1

2
ε2 〈v, v〉 − 〈u′, p〉 − ε 〈v′, p〉+ 〈f, p〉

G(0) is a minimum, so then we expect that G′(0) is a critical point.

G′(ε) = 〈u, v〉+ ε 〈v, v〉 − 〈v′, p〉

So then at ε = 0,
〈u, v〉 = 〈v′, p〉

Secondly,
G(ε) = F (u, p+ εw) ≤ F (u, p)

G(ε) =
1

2
〈u, u〉 − 〈u′, p〉 − ε 〈u′, w〉+ 〈f, p〉+ ε 〈f, w〉

G′(ε) = −〈u′, w〉+ 〈f, w〉
So at ε = 0,

〈u′, w〉 = 〈f, w〉
Thus we have proven equivalence

10.1 Finite Element Method

Let Th be the mesh with {xi} = {x0, x1, ..., xM , xM+1}. Let Ii = (xi−1, xi) with hi = xi − xi−1. We let Vh
be piecewise linear and let Wh be piecewise constant

Vh =
{
v ∈ H1(0, 1) : v|Ii = ai + bix

}
Wh =

{
w ∈ L2(0, 1) : w|Ii

}
= ci

Note that we do not impose the boundary conditions in the space. Boundary conditions are weakly
enforced via the variational problem.

The FEM is to find uh ∈ Vh and ph ∈Wh such that

〈uh, v〉 = 〈v′, ph〉 ∀ v ∈ Vh 〈u′h, w〉 = 〈f, w〉 ∀ w ∈Wh

Claim: There exists a unique solution to FEM. Proof: It suffices to show that if f = 0 then the only
solution is uh = ph = 0. Let f = 0 and take v = uh, w = ph. So

〈uh, uh〉 = 〈u′h, ph〉 〈u′h, ph〉 = 0 =⇒ ‖uh‖L2 = 0 =⇒ uh = 0

This implies
〈v′, ph〉 = 0 ∀ v ∈ Vh

So pick v such that v′ = 0 for all elements except one. This means ph = 0 on that element. Repeat
this process for all elements to conclude that ph = 0.
SO we note that the FEM is equivalent to a saddle point problem: find uh ∈ Vh and ph ∈Wh such that

F (uh, w) ≤ F (uh, ph) ≤ F (v, ph) ∀ v ∈ Vh, w ∈Wh
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Mixed FEM Basis Let φi ∈ Vh such that φi(xj) =

{
1 i = j

0 i 6= j
This is the hat function just like we had

in the cG1 method. However, we also have that ψi ∈Wh, ψi(xj) =

{
1 x ∈ (xi−1, xi)

0 elsewhere
. Set

uh =

M+1∑
j=0

ujφj ph =

M+1∑
k=1

pkψk

The uh bases are based on nodal values (values at each xi)- there are M + 2 of these. The ph live
inside the elements, based on modal values- there are M + 1 of these.

Formulation
M+1∑
j=0

〈φi, φj〉ui −
M+1∑
k=1

〈φ′i, ψk〉 pk = 0

M+1∑
j=0

〈
φ′j , φl

〉
uj = 〈f, ψl〉

So let A ∈ R(M+2)×(M+2) and B ∈ R(M+2)×(M+1) where

aij = 〈φi, φj〉 i = 0, ...,M + 1 j = 0, ...,M + 1

bij = 〈φ′i, ψk〉 i = 0, ...,M + 1 k = 1, ...,M + 1

So we have the system (
A B
BT 0

)(
~u
~p

)
=

(
~0

−~f

)
This matrix is symmetric but not positive definite. It has positive and negative eigenvalues, but it
can be shown that 0 is not an eigenvalue, so we have a unique solution. If we use a uniform mesh,
we see that

a0,0 = aM+1,M+1 =
h

3
ai−1,i = ai+1,i =

h

6
aii =

4h

6
i = 1, ...,M

bk,k = 1 ak+1,k = −1 k = 0, 1, ...,M

L2 error analysis
‖p− ph‖L2 + ‖u− uh‖L2 ≤ ch‖p‖H2

and
‖u− uh‖L2 ≤ ch2‖p‖H2

This is the opposite result as what we found for the cG(1) method.

10.1.1 Multi Dimensions

−∆p = f in Ω p = 0 on ∂Ω

Let ~u = −∇p so −∇ · ∇p = ∇ · u =~f .
Define the spaces ~V = ~H(div,Ω) =

{
~v ∈

[
L2(Ω)

]2
: ∇ · ~v ∈ L2(Ω)

}
. W = L2(Ω). Let ~v ∈ ~V be a test

function ˆ ˆ
Ω

~u · ~vd~x = −
ˆ ˆ

Ω

~v · ∇d~x =

ˆ ˆ
Ω

∇ · ~vpd~x−
˛
∂Ω

p~v · n̂ds
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Since p = 0 on the boundary, we have
ˆ ˆ

Ω

~u · ~vd~x =

ˆ ˆ
Ω

∇ · ~vpd~x

So the variational problem is to find ~u ∈ ~V and p ∈W such that

〈~u, ~v〉 − 〈∇ · ~v, p〉 = 0 ∀ ~v ∈ V

〈∇ · ~u, w〉 = 〈f, w〉 ∀ ~w ∈W

We now consider the Raviart-Thomas (1977) elements. They are triangular elements where we let w
be constant on the triangles

Wh =
{
w ∈ L2(Ω) : w|k = ak (constant)

}
Vh is trickier since the divergence needs to exist across the element edges. One idea is to use

Vh =

{
~v ∈ L2(Ω) : v|k =

(
a0 + a1x+ a2y
b0 + b1x+ b2y

)}
Note that ∇ · ~v|k = a1 + b2 which is a constant. This has 2 many degrees of freedom. So we have
the additional constraint that the outward pointing normals are constant on each edge: ~v · n̂|e =
constant. This gives us the constraint

~v|k =

(
a0 + a1x
b0 + a1y

)
So our element space is

Vh =

{
~v ∈ L2(Ω) : v|k =

(
a0 + a1x
b0 + a1y

)}
Proof: ~n1 = (y3 − y2, x2 − x3) ~n1 ⊥ (x3 − x2, y3 − y2), ~n2 = (y1 − y3, x3 − x1) ~n2 ⊥ (x1 − x3, y1 − y3),
~n3 = (y2 − y1, x1 − x2) ~n3 ⊥ (x2 − x1, y2 − y1). Note that ~n1 + ~n2 + ~n3 = ~0.

e1 : x1(s) = x2 + s(x3 − x2) y1(s) = y2 + s(y3 − y2)

e2 : x2(s) = x3 + s(x1 − x3) y2(s) = y3 + s(y1 − y3)

e3 : x3(s) = x1 + s(x2 − x1) y3(s) = y1 + s(y2 − y1)

without loss of generality: (x1, y1) = (0, 0) and (x2, y2) = (0, y2). Constraints

d

ds
[~v(xl(s), yl(s)) · n̂] = 0 l = 1, 2, 3

E1 : x3(y3 − y2)a1 + (y3 − y1)2a2 − b1x2
3 + x3(y2 − y3)b2 = 0

E2 : x3y3a1 + y2
3a2 − b1x2

3 + x3y3b2 = 0

E2 :???a1 = 0

a2 = 0. Subtract E2 from E1 to get that b2 = a1. Then E2 tells us that b1 = 0. Note: The Edge to

Element inversion: ~v · n̂l = El for l = 1, 2, 3 can uniquely determine ~v|k =

(
a0 + a1x
b0 + a1y

)
.

a0 =
−1

2 |K|

3∑
l=1

xlEl b0 =
−1

2 |K|

3∑
l=1

ylEl c0 =
−1

2 |K|

3∑
l=1

El
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Where |K| is the area of the element K. Therefore

∇ · v|k = 2a1 =
1

|K|

3∑
l=1

El

So the divergence is piecewise constant.
So the FEM is to find ~uh ∈ ~Vh and ph ∈Wh st

〈~uh, ~v〉 − 〈∇ · ~v, ph〉 = 0 ∀ ~v ∈ ~Vh

〈∇ · ~uh, w〉 = 〈f, w〉 ∀ w ∈Wh

where
Wh =

{
w ∈ L2(Ω) : w|k = ak (constant)

}
Vh =

{
~v ∈ H(div,Ω) : v|k =

(
ak + bkx
ck + bky

)}

Basis Let ~φl ∈ ~Vh for l = 1, ..., S where S is the total number of edges. Where (~φl · n̂)(~ek) = δlk where
~ek is the midpoint of the kth edge.

~uh =

S∑
l=1

uj~φj(~x)

With uj = (~uh · n̂l)(~el) (uh dotted with the normal and evaluated at the midpoint).

~uh =

S∑
l=1

uj~φj(~x)

Let ψi ∈Wh for i = 1, ..,M where M is the total number of elements.

~ψi(~x) =

{
1 ~x ∈ ki
0 ~x /∈ ki

pn =

M∑
i=1

piψi(~x)

where pi = 1
|ki|
´ ´

Ki
phd~x (the average value of the pressure over the element).

no class on dec 4 nov 2 hw 3 due presentations begin dec 11

11 Appendix

Areas To calculate the area of a triangle given the vertices ~x1, ~x2, ~x3,

area =
1

2
‖(~x3 − ~x1)× (~x2 − ~x1)‖
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