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Part I

Linear Algebra
Linear Algebra concerns vector spaces and linear maps between those vector spaces.
•Geometric interpretation: Vectors are a class of arrows defined by length and direction.
•Analytic Viewpoint: Vectors take the form

~v =


v1

v2

...
vn

 vi ∈ F

with vector addition and scalar multiplication defined as such:

α~v + ~w =


αv1 + w1

αv2 + w2

...
αvn + wn

 vi, wi ∈ F, α ∈ R

1 Vector Spaces

A vector space V over a field F has two operations:

• Vector addition: (u, v) ∈ V → w ∈ V
Properties: Abelian (commutative), associative, invertible (−v), unit element (zero vector)

• Scalar Multiplication: a ∈ R, v ∈ V → w ∈ V
Properties: Unit element (1), Distributive: Multiplication α(βv) = (αβ)v, Distributive: Addition

Vector spaces are closed under both operations.
If we consider functions to be vectors, then the following are vector spaces

• Rn with scalars in R, and Cn with scalars in C

• C(Ω), Cm(Ω), C∞(Ω) are vector spaces

• Pn ⊂ C∞(Ω) is a vector space of polynomials of degree less than n

• P ⊂ C∞(Ω) is a vector space of polynomials of any degree

• Lp(Ω) with 1 ≤ p ≤ ∞ are vector spaces Note that d(f, g) = 0 ⇐⇒ f = g a.e. since they can differ
on a set of measure zero and still have the same integral, thus two such functions must be regarded
as identical, so f ∼ g (equivalence relation) if f = g a.e.

• The general solutions of PDEs are a vector space

1.1 Linear Combinations of vectors
n∑
i=1

αi~vi
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Vectors are linearly dependent if ∃ αi such that
n∑
i=1

αi~vi = 0 but not all αi = 0. (this includes any space that

contains the zero vector)
Linearly independence: A set of vectors is linearly independent if

n∑
i=1

αi~vi = 0⇒ ∀ i αi = 0

1.1.0.1 Convex combinations of vectors are linear combinations
∑
αi ~vi s.t αi ≥ 0 ∀ i and

∑
αi = 1

1.1.0.2 Convex Hull conv(A) of {~vi} is the set of all convex combinations of the vectors in {~vi}
conv(σ(A)) =

⋂
{F}

W (F−1AF ) with {F} being all nonsingular changes of bases.

The

1.1.0.3 Span of a set of vectors L{S} is the set of all linear combinations of S

A collection of vectors S is a

1.1.0.4 Spanning Set for V if L{S} = V

1.2 Linear Subspaces

W is a subspace of a vector space V if

• W contains the 0 vector

• W is closed under linear combinations. (x, y ∈W , a, b ∈ C =⇒ ax+ by ∈W )

• For any V , the smallest possible subspace is {0} and the larget possible subspace is V itself

• For any {~vi}, span(~vi) is a subset

• A subspaceof W is invariant under a maping A if AW ⊂W . A will map vectors in W to W .

1.3 Dimension

A vector space V has dimension n if ∃ n linearly independent elements of V.
If {v1, ...vn} are linearly independent, then dim ({v1, ...vn}) = n

If dim({v1, ...vn}) < n, then the homogenous equation
n∑
i=1

αi~vi always has a nontrivial solution

1.4 Bases

A basis of a vector space V is a subset S ∈ V which contains vectors that are linearly independent and
span V
In other words, a basis is a linearly independent spanning set of V
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• S is a basis of V if and only if span {S} = V and each ~v ∈ V can be expressed by at least one
combination of elements of S

• S is a basis of V if and only if the elements of S are linearly independent and each ~v ∈ V can be
expressed by by at most one combination of elements of S

• Every vector space has a basis

• The number of elements in the basis is unique

• If span({vi}) is linearly independent, this implies ∀ w ∈ V ∃ ! αi such that ~w =
n∑
i=0

αi~v

1.4.0.5 Hamel Basis We say S ⊂ V is a Hamel Basis if ∀ x ∈ V there exists a unique set of scalars
{c1, ..., cn} and vectors in S {~s1, ...,~sn} such that

x =

n∑
i=1

cn~sn

The Hamel Basis is the default basis

1.5 Norms ‖·‖
A norm on a linear space X is a function ‖·‖ : X → R with the properties:

• ‖x‖ ≥ 0 ∀ x ∈ X (nonnegative)

• ‖λx‖ = |λ| ‖x‖ ∀ x ∈ X,λ ∈ C(homogeneous)

• ‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀ x, y ∈ X (triangle inequality)

• ‖x‖ = 0 ⇐⇒ x = 0 (stricly positive)

1.5.1 Normed Linear Space

A normed linear space (X, ‖·‖ ) is a linear space X equipped with a norm ‖·‖ and metric d(x, y) = ‖x− y‖
(or d(x, y) = f(‖x− y‖ ).

Normed linear spaces have the properties:

• d(x+ z, y + z) = d(x, y) ∀ x, y, z ∈ X (translational invariance)

• d(λx, λy) = |λ| d(x, y) ∀ λ ∈ C (homogeneity)

Example: d(x, y) =
‖x−y‖
‖x−y‖ +1

1.6 Vector Norms ‖·‖p

‖x‖p =
(∑

|xi|p
) 1
p
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1.6.0.1 Sum Norm, p = 1

‖x‖sum = ‖x‖1 =
∑
|xi|

1.6.0.2 Euclidean Norm, p = 2

‖x‖Euclidean = ‖x‖2 =
√∑

|x2
i |

1.6.0.3 Maximum Norm, p =∞
‖x‖max = ‖x‖∞ = max {|xi|}

All finite dimensional norms behave similarly with respect to convergence.
Convergence with respect to infinite dimensional spaces depend highly on the norm.

Given a vector x in CN ,
‖x‖p+a ≤ ‖x‖p ∀ p ≥ 1 ∀ a ≥ 0

‖x‖p ≤ ‖x‖r ≤ n( 1
r−

1
p )‖x‖p ∀ p ≥ 1 ∀ a ≥ 0

Examples: ‖x‖2 ≤ ‖x‖1 and ‖x‖1 ≤
√
n‖x‖2.

2 Linear Mappings

For a linear map (homomorphism) L : Cn → Cm denoted V L→W ,
Range R(L) ⊆W = {Lv; v ∈ V }
Nullspace N(L) ⊆ V = {v;Lv = 0}
and dim(N(L)) + dim(R(L)) = dim(V )

Linearity for a map L from a vector space V such that (v, u) ∈ V , (α, β) ∈ R means

L(αv + βu) = αL(v) + βL(u)

If V has basis {~ei} and W has basis
{
~fi

}
then for any ~v ∈ V ,

~v =
∑

vi~ei

L~v =
∑

viL~ei =
∑
i

vi
∑
j

Lji~fi

A linear map V L→W is represented by

~w = L~v w1

...
wm

 =

 L11 . . . L1n

...
. . .

...
Lm1 . . . Lmn


 v1

...
vn
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2.0.0.4 Composition For a mapping V L→W
M→ X with dim(n), dim(m), dim(p) respectively,

the mapping V N→ X is given by

Np×n = Mp×m ◦ Lm×n
or

nij =
∑
k

miklkj

2.0.0.5 Conjugation To change the basis of a vector space, you must also change the linear maps.
Given V Le→ V in basis {~e1, ..., ~en}
and V

Lf→ V in basis
{
~f1, ..., ~fn

}
related by ~ve = F~vf , as in F is the basis vectors of the new coordinate system expressed in terms of the
old basis vectors.

~we =Le~ve

F ~wf =LeF~vf

~wf =(F−1LeF )~vf

Lf = F−1LeF

And Lf is known as a conjugate of Le.

3 Matrices

For convention, a matrix A has n columns and m rows.
Cm×n is the space of m× n matrices, which is a vector space of dimension mn
If m = n, then you have a ring with unit I (the identity matrix s.t. I~v = ~v ∀ v), although there is not generally
an inverse.

3.0.0.6 Matrix Transpose Complex Conjugate Transpose (also known as the adjoint) A∗ ∈ Cm×n of
A ∈ Cm×n is the matrix s.t aij = aji
Defined by 〈~v, A~w〉 = 〈A∗~v, ~w〉 ∀ v, w

• The adjoint is unique

• Also known as the Hermitian transpose

• tr(A∗) = tr(A)

• det(A∗) = det(A)

The real transpose is defined as (AT )ij = Aji

• tr(AT ) = tr(A)

• det(AT ) = det(A)

• If A is real, then AT = A∗

• (AB)T = BTAT
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3.0.0.7 Symmetry A ∈ Cn×n is Hermitian if A∗ = AH = A

• Hermitian matrices have real eigenvalues

• A ∈ Rn×n is symmetric if AT = A

• Eigenvectors of A corresponding to different eigenvalues are orthogonal.

Given (λi, ~vi) and (λj , ~vj), λi 6= λj =⇒ ~vTi ~vj = 0

• For every eigenvalue of A, the geometric and algebraic multiplicities are the same. If A ∈ Cm×m,
then there exists exactly m linearly independent eigenvectors which can be chosen to be mutually
orthonormal. Therefore the spectral decomposition is

A = UDU−1 = UDU∗

for U unitary and D ∈m×m diagonal with Dii = λi

• If A ∈ Cm×n, then A∗A ∈ Cn×n is Hermitian with eigenvalues λ ≥ 0.

(A∗A)∗ = A∗A =⇒ A∗A~x = λ~x

~x∗A∗A~x = λ~x∗~x

λ =
~x∗A∗A~x

~x∗~x
=

(A~x)∗(A~x)

~x∗~x
≥ 0

A ∈ Cn×n is skew-symmetric if A∗ = −A

3.0.0.8 Block Matrices Blocks of matrices can be treated as individual elements of matrices, as long as
dimensions are handled properly.
Example. The matrix equation

A3×4~v4×1 = ~b1×3

is equivalent to (
B2×1 C2×2 D2×1

E1×1 F1×2 G1×1

) H1×1

I2×1

J1×1

 =

(
BH + CI +DJ
EH + FI +GJ

)

3.1 Elementary Matrix Forms

3.1.0.9 Diagonal Matrices All of the entries above and below (off-diagonal) the diagonal are 0.

D =

 x . . . 0
...

. . .
...

0 . . . x


A rectangular diagonal matrix has the form(

D
0

)
or

(
D 0

)

9



3.2 Matrix Properties
Pierson Guthrey

pguthrey@iastate.edu

3.1.0.10 Triangular Matrices All of the entries either above or below the diagonal are 0, known as Lower
triangular and Upper triangular respectively. It is strictly lower/upper triangular if the diagonals are also
all 0.

R =

 ∗ . . . ∗
...

. . .
...

0 . . . ∗

 L =

 ∗ . . . 0
...

. . .
...

∗ . . . ∗


• Triangular matrices are assumed to be square

• The inverse of a nonsingular lower (upper) triangular matrix is a lower (upper) triangular matrix

• The product of two upper (lower) triangular matrices is an upper (lower) triangular matrix, since

• The eigenvalues of a triangular matrix lie on the diagonal, and the eigenvectors are easy to find:

(R− λI)~vi =~0 λ1 − λi a12 a13

0 0 a23

0 0 λn − λi

 ?
1
0

 =

 0
0
0


3.1.0.11 Banded All of the entries above and below a certain ’distance’ from the diagonal are 0.

∗ ∗ . . . 0

∗
. . .

...
...

. . . ∗
0 . . . ∗ ∗


• Matrices with a nonzero first superdiagonal and first subdiagonal are known as tridiagonal

3.1.0.12 Permutation Matrix Each row and column has exactly one 1 and all other entries are 0.

Pπ =

 0 1 0
1 0 0
0 0 1


3.1.0.13 Permutations A permutation π : 1, ...,m→ 1, ...,m has the form(

1 2 . . . 4
π(1) π(2) . . . π(m)

)
and can be represented by a permutation matrix Pπ. Note:
sign(π) = ±1 = (−1)n = (−1)det(Pπ), n the number of pairwise interchanges that produce the permutation

3.1.0.13.1 Permutation Similarity Matrix of matrix A is a matrix PπAPTπ

3.2 Matrix Properties

3.2.0.14 Matrix Invariants For a given A ∈ Cn×n,
Let Vk = subset of k elements of (1, ..., n)
Let {π} be the collection of all possible permutations of V

10
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Then we define Sk(A)

Sk(A) =
∑
Vk

∑
{π}

sign(π)
∏

ai,π(i)

All Sk(A) are objective (do not change with coordinate systems)

3.2.0.15 Trace of a Matrix tr(A) = S1(A) = a11 + a22 + . . .+ ann
The sum of all diagonal entries.

• tr(AB) = tr(BA)

• tr(A∗A) =
n∑
i=1

a∗jaj =
n∑
i=1

‖aj‖22

A sphere of radius 1 transformed using a symmetric A into an ellipsoid will have |tr(A)| =
∑
semiaxes

3.2.0.16 Determinant of a Matrix det(A) = S3(A) = a11a22 . . . ann + ...
Note: |Sk(A)| = |S3(k)| for k = 2, 3, 4, 5..
Facts
det(AB) = det(A)det(B) det(I) = 1 det(A−1) = 1

det(A) (assuming A−1 exists)
det(A) 6= 0 ⇐⇒ the matrix is nonsingular ⇐⇒ nullspace is the zero vector
A cube of volume 1 transformed using A into a parallelpiped will have volume |det(A)|

3.2.0.17 Matrix Inverse Any nonsingular matrix has a unique inverse A−1 s.t AA−1 = A−1A = I

• If A,B ∈ Rn×n are invertible (detA 6= 0,detB 6= 0) then so it AB and (AB)−1 = B−1A−1

The following are equivalent for A ∈ Cn×n

1. A−1 exists.

2. det(A) 6== 0

3. A~x = ~b has a unique solution for any ~b

4. The rows of A are linearly independent

5. The columns of A are linearly independent

6. N(A) =
{
~0
}

and thus null(A) = 0

7. R(A) = Cn and thus rank(A) = n

Column Space: C(A) is the linear combination of all column vectors of a matrix. You can solve Ax = b
exactly when b is in the column space of A. If the column vectors span Rm, then C(A) is a subspace of Rm,
but may be of a lesser dimension. The column space is not in general a subspace.

R(A) = {~y ∈ Cn : ~y = A~x for some ~x ∈ Cn}

11
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• dim(R(A)) = rank(A) is the rank of A

• rank(A) + null(A) = n

Null Space: N(A) is the space of all solutions to Ax = 0. If the row vectors span Rn, then the nullspace
is a supspace of Rn. Usually this is found by putting the matrix in echelon form and then finding the space
spanned by the special solutions.

N(A) =
{
~x ∈ Cn : A~x = ~0

}
• For any matrix A, ~0 ∈ N(A)

• dim(N(A)) = null(A) is the nullity of A

Special solutions: When fidning a null space, set each free variable in turn to 1 and find the vector that
solves rref(A)x = 0. Each of those is a special solution. The null space is the space spanned by the linear
combination of all of the special solutions.

Rank of the Matrix: The rank(A) is... It is always the case that rank(A) ≤ m AND rank(A) ≤ n. A is of
full rank iff
Full column rank: If r=n, null(A) = 0. You have n pivot variables and no free variables. This means you
have at most 1 solutions to Ax = b.

• Full row rank: If r=m, you can solve Ax = b for any b. There are an infinite number of solutions. You
have m pivot variables and n-m free variables.

• Full rank: There is one unique solution for any b for Ax = b.

Solvability Condition: The condition on b such that Ax = b has solutions. Namely, b must be in C(A).

Complete Solution: The complete solution to Ax = b is the linear combination of the particular solution
xp and all of the vectors in N(a). xcomplete = xparticular + xnull.

Echelon form: A is in echelon form if it has the shapce resulting from Gaussian Elimination. If GA is
performed on the rows, it is known as Row Echelon Form. If GA is performed on the columns, it is known
as Column Echelon Form.

• All nonzero rows/columns are above any rows/columns of all zeroes.

• The leading coefficient (first nonzero number from the left, aka the pivot) of a nonzero row/column is
always strictly to the right of the leading coefficient of the row above it.

• All entries in a cloumn below a leading entry are zeroes.

Reduced row echelon form (aka canoonical form): A matrix is in this form if it meets all the criteria of
Echelon Form, but in addtion also satisfies:
• Every leading coefficient is 1 and is the only nonzero entry in it’s column.

3.3 Matrix Norms

Matrix norms treat a matrix A as an operator and come in three common varieties: induced norms, Schatten
norms, and entrywise norms. Matrix norms have the property ‖AB‖ ≤ ‖A‖ ‖B‖ .
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3.3.1 Induced Norms

Given a vector norm ‖·‖p, let A ∈ Cn×m, the subordinate norm of A is

‖A‖p,q = sup
x 6=0,x∈Cn

‖Ax‖q
‖x‖p

= sup
‖x‖p=1,x∈Cn

‖Ax‖q

If p = q, we have the induced norm

‖A‖p = sup
x 6=0,x∈Cn

‖Ax‖p
‖x‖p

= sup
‖x‖p=1,x∈Cn

‖Ax‖p

• p = 1 leads to the maximum absolute column sum

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |

• p = 2 leads to the largest singular value of A, ie the square root of the largest eigenvalue of the
positive semi-definite matrix A∗A

‖A‖2 =
√
λmax(A∗A) = σmax(A)

• p =∞ leads to the maximum absolute row sum

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |

Fun facts

• For any induced norm, ‖Ar‖r
−1

p ≥ ρ(A), where equality holds for p = 2.

3.3.2 Schatten Norms

The Schatten norms arise when applying the p−norm to the vector of singular values of a matrix. Let {σi}
be the singular values of A.

‖A‖p =

min(m,n)∑
i=1

σpi

 1
p

Schatten norms are unitarily invariant. That is, for any unitary matrices U, V ,

‖A‖p = ‖UAV ‖p

• For p = 1, we have the Nuclear norm also known as the Trace norm

‖A‖∗ =

min(m,n)∑
i=1

σi

• p = 2. The Frobenius norm is the finite dimensional analog of the Hilbert Schmidt norm

‖A‖F = ‖A‖2 =

 n∑
j=1

m∑
i=1

|aij |2
 1

2
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with the interesting property

‖A‖F =
√

trace(A∗A) =

√√√√min(m,n)∑
i=1

σ2
i

• For p =∞, we have the spectral norm

‖A‖∗ = max
1≤i≤min(m,n)

σi

3.3.3 Entrywise Norms

Entrywise norms treat A ∈ Cn×n as a vector of size mn, so they take the form

‖A‖p,q =

 n∑
j=1

(
m∑
i=1

|aij |p
) q
p

q−1

These are not guaranteed to be sub-multiplicative, and therefore are norms that may not be consistent with
vector norms.

• In data analysis, a common norm is L2, 1 norm

‖A‖2,1 =

 n∑
j=1

(
m∑
i=1

|aij |2
) 1

2


• The max norm is not sub-multiplicative and therefore not a true norm

‖A‖max = ‖A‖∞,∞ = max
1≤i≤m,1≤j≤n

|aij |

3.4 Eigenvalues

For a given A ∈ C, λ ∈ Cn×n is an eigenvalue of A associated with eigenvector v 6= 0 s.t

Av = λv

and the pair (λ, v) decribe a vector v for which A maps to a a multiple λ of itself.
Eigenvalues of A∗ = complex conjugates of eigenvalues of A
Eigenvalues of AT = eigenvalues of A∑
eigenvalues = tr(A)∏
eigenvalues = det(A)

Eigenvalues are preserved under change of basis (eigenvalues of A = eigenvalues of F−1AF ) but eigen-
vectors ~v will be different.

det(A− λI) = det(F−1BF − F−1λIF ) = det(B − λI), ~v′ = F~v

Eigenvalues depend continuously on the matrix entries.
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3.4.0.1 Gershgorin Theorem Let D(A) =
n⋃
i=1

Di with circles Di = {z ∈ C| |z − aii| ≤ ri} with the row

sum ri =
∑
i 6=j = |aij |

All eigenvalues are in D(A)
If there are k circles Di which intersect but are separated from other circles then there are exactly k eigen-
values in the union of the k circles. (Note the eigenvalues are in the union of the circles, not the circles
themselves)
If ri = 0 ∀ i, then Di is the set of eigenvalues in circles of radius 0.
AT creates different circles (it uses column sums of A)

3.4.0.2 Eigenvectors ~v
Right eigenvectors are A~v = λ~v
Left eigenvectors are A∗~w = λ~w or ~w∗A = λ~w∗

3.4.0.3 Eigenspace E(λ) The subspace of Cn×n defined by {v : Av = λv}

3.4.0.4 Characteristic Polynomial χ(λ) χ(λ) = det(A− λI) = 0

• Fundamental Theorem of Algebra implies every n × n matrix A has exactly n eigenvalues, possibly
complex, possibly multiple.

• For every eigenvalue there is at least one eigenvector.

• For real A, any complex eigenvalues come in complex conjugate pairs (λ,~v) and (λ,~v)

• Cayley Hamilton Theorem: A matrix satisfies its own characteristic polynomial

χA(A) = A+ an−1A
n−1 + ...+ a0I

Proof is in 507 Notes

3.4.0.5 Multiplicity

• The Algebraic Multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial
of the matrix. We can see

Algebraic multiplicity α(λ) = dimNp =
∑
i

dimMi

• The Geometric Multiplicity γ(λ) of an eigenvalue is the number of linearly independent eigenvectors
associated with that eigenvalue

• 1 ≤ γ(λ) = dimM1 ≤ α(λ) = dimNp

3.4.0.6 Spectrum Spectrum σ(A) = {eigenvalues of A}
Spectral radius ρ(A) = max(|λ|)
ρ(A∗) = ρ(AT ) = ρ(A)
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3.4.0.7 Orthonormal A collection of vectors {~vi} is orthonormal if 〈vi, vj〉 = δij

3.5 Numerical Range and Radius

3.5.0.8 Numerical Range W (A) = {U∗AU : ‖U‖ = 1} for A ∈ Cn×n
σ(A) ⊂W (A)
W (αA+ βI) = αW (A) + β
W (A⊕B) ⊂W (A) +W (B)
W (A∗) = W (A)
W (A) is compact and convex
conv(σ(A)) ⊂W (A)
If A is Hermitian, W (A) = [λmin, λmax](

A1 0
0 A2

)
=⇒ W (A) = conv(W (A1)

⋃
W (A2))

W (A) = {0} =⇒ A = 0

3.5.0.9 Numerical Radius r(A) = max({|z| , z ∈W (A)})
ρ(A) ≤ r(A)
For A normal. ρ(A) = r(A)
r(A∗) = r(AT ) = r(A)

3.6 Minimal Polynomial

The minimal polynomial µA(λ) is the polynomial of lowest degree for which µ(A) = 0

• µA(λ) always exists since χA(A) = 0

• µA(λ) always has the form
∏
i

(λ− λi)ki with 0 ≤ ki ≤ α(λi) for eigenvalues {λi} of A

• Relation to Jordan chains: µA(λ) =
∏
i

(λ− λi)µi , where µi is the length of the longest chain

3.7 Special Types of Matrices

3.7.0.10 Orthogonal Matrices Q ∈ Rn×n is orthogonal if QT = Q−1

• Q is made up of mutually orthonormal vectors ~qTi ~qj = δij

• QTQ = I

3.7.0.11 Unitary U ∈ Cn×n is unitary if U∗U = I ⇐⇒ U∗ = U−1

The column vectors are orthonormal. ~U∗1
~U∗2
~U∗3

 ~U1
~U2

~U3

 = I
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Implying 〈U∗i , Uj〉 = δij
det(U) = ±1 =⇒ |det(U)| = 1
‖U~v‖ = ‖~v‖ ∀ ~v
〈U~v, U ~w〉 = 〈~v, ~w〉
If U is real it is called ortogonal and is a rotation matrix
Eigenvalues of U are on the unit circle.

3.7.0.12 Rotation Matrix
A real unitary matrix U ∈ Rn×n has one of the following forms:

U =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
or

(
cos(θ) sin(θ)
sin(θ) −cos(θ)

)
det(U) = 1 if U is a rotation
det(U) = −1 if U is a rotation and reflection

3.7.0.13 Normal Matrix
A square matrix N ∈ Cn×n is normal if N∗N = NN∗

W (N) = conv(σ(A))
ρ(A) = r(A)

3.7.0.14 Nilpotent Matrix
A is nilpotent of order p if

Ap = 0 and Ap−1 6= 0 for some p ≥ 1

As in, p is the lowest power for which Ap becomes the zero matrix

• A is nilpotent if and only if all eigenvalues of A are zero

3.7.0.15 Projection Matrix
A matrix P projects a vector v ∈ V onto a subspace of V , say U

• P 2 = P , and all eigenvalues of P are 0 or 1

• The target subspace U is invariant under P . That is, P is the identity operator of U

• P is idempotent

• Say K is the kernel of W . We have a direct sum W = K ⊕ U and every vector in W can be
decomposed as x = u+ k with u = Px and k = x− Px.

• The range and kenrel of P are complementary

Cm = range(P )⊕ null(P ), range(P ) ∩ null(P ) =
{
~0
}

• Q = I−P is also a projector. The kernel and range of P are the range and kernel of Q and vice-versa.

range(P ) = null(I − P ), range(I − P ) = null(P ), null(P ) ∩ null(I − P ) =
{
~0
}

• In an infite dimensional vector space, the spectrum is contained in {0, 1}. The only eigenvalues of a
projection are 0 (the eigenspace of which is the kernel of P ) or 1 (the eigenspace of which is the range
of P ).
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3.8 Matrix Factorizations

3.8.1 LU Factorization

PA = LU

or
PA = LDU

• L is lower triangular

• D is diagonal

• R is upper triangular

• P is a permutation matrix to ensure the first element of L is nonzero

• All square matrices can be factored this way

• If A is invertible, it admits an LDU factorization if and only if all leading principle minors are nonzero

3.8.1.1 Cholesky Decomposition
If A is Hermitian (or symmetric) and positive definite, for a LU or LDU factorization we see that U = L∗ so

A = LL∗

or
A = LDL∗

• Always exists and is always unique

• Numerically stable compared to other LU factorizations

3.8.2 QR Decomposition

A = QR

For an orthogonal matrix Q and an upper triangular matrix R. If A is invertible, then the requiring the diagonal
entries of R to be positive makes the decomposition unqiue.
If A is not full rank,

Am×n =
(
Q1 Q2

)
m×m

(
R1

0

)
m×n

= Q1R1

If A has n linearly independent columns,

• Q1 is m× n and forms an orthonormal basis for the column space of A

• Q2 is m× (m− n)
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3.8.3 Schur Factorization

If A ∈ Cn×n
A = QUQ−1 = QUQ∗

• Q is unitary, Q∗ = Q−1

• U is upper triangular and is known as the Schur Form of A

• U is similiar to A and has the eigenvalues of A along its diagonal

Facts

• If A is Hermitian Schur Factorization is identical to Spectral Decomposition

• Every square matrix is unitarily similar to an upper triangular matrix (has a Schur Factorization)

3.8.4 Spectral Decomposition

If A ∈ Cn×n is diagonalizeable (distinct eigenvectors), then

A = V ΛV −1

• Λ is diagonal formed from the eigenvalues of A

• V are the corresponding eigenvectors of A

Facts

• Also known as Eigendecomposition

• Existence: Since AV = ΛV , V −1 exists if the eigenvectors are distinct

• Requiring that each eigenvalue’s geometric multiplicity be equal to its algebraic multiplicity is neces-
sary and sufficient

• If A is also symmetric, and we normalize so V TV = I, then A = V ΛV T

• If A is Hermitian Spectral Decomposition is identical to Schur Factorization

3.8.5 Unitary Diagonalizeability

If A is normal then
A = QDQ∗

for some unitary matrix Q.

• A is unitarily diagonalizeable if and only if A is normal.

3.8.6 Rank Factorization

Any matrix A ∈ Cm×n that has rank r, can be factored:

A = CF

• Cm×r has columns that form a basis for the column space of A

• Fr×n has the coefficients for each row of A in terms of the basis C. That is,

aj = f1jc1 + f2jc2 + ...+ frjcr

• There is no restriction on A
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3.8.7 Polar Decomposition

For a square matrix A,
A = QH

• Q = UV ∗ is unitary

• H = V ΣV ∗ is Hermitian and positive definite

• H is unique

3.8.8 Singular Value Decomposition

For any matrix Am×n,
Am×n = Um×mΣm×nV

∗
n×n

• U is a unitary matrix whose columns are the left singular vectors of A. The left singular vectors of A
are the eigenvectors of AA∗

• Σ is a retangular diagonal matrix with the singular values σi of A along the diagonal. The singu-
lar values of A are the nonzero eigenvalues of AA∗ and A∗A. The convention is to write them in
nonincreasing order, and so σ1 ≥ σ2 ≥ ....

• V ∗ is a unitary matrix where the columns of V are the right singular vectors of A. The right singular
vectors of A are the eigenvectors of A∗A

• Σ is unique, but U ,V ∗ are not

• The SVD exists for all matrices A ∈ Cn×m. (Proof by construction)

If m ≥ n, let p = min(m,n)

UΣV ∗ =

 ~u1 · · · ~um




σ1

. . .
σp

0 0 0
...

...
...


 ~v1 · · · ~vn

∗

If m ≥ n, let p = min(m,n)

UΣV ∗ =

 ~u1 · · · ~um


 σ1 0 . . .

. . . 0 . . .
σp 0 . . .


 ~v1 · · · ~vn

∗

• Geometric interpretation: The image of the unit sphere in RN under the map A = UΣV ∗ is a hyperel-
lipse in RM . Take x ∈ RN with ‖x‖2 = 1. Notice ‖V ∗x‖2 = 1. V ∗ rotates and or reflects x. D(V ∗x) is
a stretching and or contracting of certain elements of V ∗x. U rotates and or reflects DV ∗x.
If we are in R2, this ellipse has semimajor axis σ1 and semiminor axis σ2.

• The SVD can be used to rewrite A as the sum of r rank one matrices

Ar = σ1~u1~v
∗
1 + ...+ σr~ur~v

∗
r

With the interesting property that

‖A−Ak‖2 =

{
σk+1 k = 1, 2, ..., r − 1

0 k = r
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Which solves the optimization problem of finding the closest rank k matrix to A

‖A−Ak‖2 = inf
{
‖A−B‖2 : B ∈ Cm×n, rank(B) = k

}
3.8.9 Moore Penrose Pseudoinverse OR Generalized Inverse

A† is the generalization of the matrix inverse that satisfies

A† = (A∗A)
−1
A

or using the SVD A = UΣV ∗:
A† = V Σ−1

1 U∗

Where Σ−1
1 =

(
Σ−1 0

0 0

)
is th einverse othe nonzero block of Σ

•
(
A†
)†

• AA†A = A, where AA† maps columns to themselves but need not be the identity

• A†AA† = A† , where A† is the weak inverse

•
(
AA†

)∗
= AA†, therefore AA† is Hermitian

•
(
A†A

)∗
= A†A, therefore A†A is Hermitian

Facts about the pseudoinverse

• A† exists for any matrix

• If A ∈ Rn×n, then A† ∈ Rn×n

• If A is invertible, A† = A−1

•
(
AT
)†

=
(
A†
)T

• A† = A†

• (A∗)
†

=
(
A†
)∗

• (αA)
†

= α−1A† if α 6= 0

3.9 Matrix Nullspace N(A)

For a matrix A, the nullspace is the set of all vectors N(A) such that if v ∈ N(A), then Av = 0. That is,

x ∈ N(A) ⇐⇒ Ax = 0

• N(Ak+1) ⊇ N(Ak) since x ∈ N(Ak) ⇐⇒ Akx = 0

• If Ak = Ak+1 for some k, then Ak = Ak+1 = Ak+2 = ... = Am ∀ m ≥ k

If A is nilpotent of order p, then

{0} $ N(A) $ N(A2) $ ... $ N(Ap) = N(Ap+1) = ...

denoted N0, N1, N2, ..., Np, Np+1, ... respectively
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3.9.0.1 Generalized Nullspace N (A) = Np
If A is not nilpotent, then N (A) = {0}
Define Mk as the complement of Nk−1 in Nk, so

Np = Np−1 ⊕Mp = Np−2 ⊕Mp−1 ⊕Mp

and
N1 = N0 ⊕W1 = W1

so we see
Cn = M1 ⊕M2 ⊕ ...⊕Mp

3.9.0.2 Generalized Eigenvectors v is a Generalized Eigenvector of order k for eigenvalue λ = 0 if

v ∈Mk ⇐⇒ Akv = 0 where Ak−1 6= 0

• M1 are the eigenvectors of A

• A maps Mk →Mk−1 for k ≥ 2 and is one-to-one

• dim(Mk) ≤ dim(Mk−1)

3.10 Jordan Normal Form

The Jordan Normal form generalizes the eigendecomposition to cases where there are repeated eigenval-
ues and the matrix cannot be diagonalized. The Jordan Normal Form for a matrix A is

A = V JV −1

where V is a basis formed from the generalized eigenvectors of A. J has the form

J?×? =


J1

J2

. . .
J?

 with blocks Ji =


λi 1

λi
. . .
. . . 1

λi


?×?

• J is upper triangular

• V JV −1 is not unique since we can rearrange the blocks and corresponding eigenvectors

• Each block corresponds to one eigenvector

• The number of blocks to a given λi is equal to γ(λi)

• The size of a block is the length of the chain

• A is diagonalizeable if and only if all blocks have size |x|

• For A ∈ Cn×n, if n ≤ i for some small unkown i, the chain structure is uniquely determined by α, γ, µ
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3.10.0.3 Example If A ∈ C4×4 with a single eigenvalue λ, we consider all possibilities (permutations are
equivalent)
Note that µ is the length of the longest chain

γ(λ) α(λ) µ
single chain (4) 1 4 4
two chains (3, 1) 2 4 3

(2, 2) 2 4 2
(2, 1, 1) 3 4 2
(1, 1, 1, 1) 4 4 1

A Jordan Chain is the column of eigenvectors in a table of the following form:
Say dimM1 = 4, dimM2 = 3, and dimM3 = 1, then

M3 v
(3)
1 = N3 \N2

M2 v
(2)
1 = Av

(3)
1 v

(2)
2 v

(2)
3 = N2 \N1

M1 v
(1)
1 = Av

(2)
1 v

(1)
2 = Av

(2)
2 v

(1)
3 = Av

(2)
3 v

(1)
4 = N1 \N0

{0} = N0

• Each

v
(k)
i =

{
ith k-dimensional generalized eigenvector k > 1

ith k-dimensional eigenvector of A k = 1

• The Jordan Chains are subspaces which are invariant under A?

• If A is nilpotent we can choose a basis v and see

v =
(
v

(1)
1 v

(2)
1 v

(3)
1 v

(1)
2 v

(2)
2 v

(1)
3 v

(2)
3 v

(1)
4

)
Av =

(
0(0) v

(1)
1 v

(2)
1 0(0) v

(1)
2 0(0) v

(1)
3 0(0)

)
3.11 Least Squares Problems

We want to solve Ax = b for a m× n matrix of rank r.
The least squares solution x̂ to Ax = b is the x with smallest ‖·‖2 among all x that minimize ‖Ax− b‖2 In
general, this is

x̂ = A†b = V Σ†U∗b

In MatLab, x = A \ b gives x̂ using QR

3.11.1 Exactly Solvable Case: m = n = r

If A is square, nonsingular (m = n = r),

• Ax = b has a solution if and only if b ∈ R(A)

• Given a solution x, and n ∈ N(A), x+ n is also a solution since A(x+ n) = Ax = b

• Solution is unique if and only if N(A) = {0}
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3.11.1.1 Solution Methods

• The soluton is
x = A−1b

But this is not practical to compute, but proves the existence of a solution

• Using the LU decomposition

Ax = P−1LUx = b


A = LU

Ly = Pb

Ux = y

Which can be solved with forward/backward substitution.

• Using QR (thrice the effort of LU)

Ax = QRP−1x = b


A = QRP−1

Qz = b z = Q∗b

Ry = z triangular
P−1x = y x = Py

• Using SVD (requires the most effort)

Ax = UΣV ∗x = b


A = UΣV ∗

Uz = b z = U∗b

Σy = z diagonal
V ∗x = y x = V y

3.11.2 Overdetermined case: m > n, n = r

N equations with 2 unknowns:  x1 1
...

...
xn 1

( α
β

)
=

 y1

...
yn


• N(A) = {0}

• R(A) is not the whole space (is a proper subset of whole space), which implies a solution need not
exist

• The residual r(x) = r = Ax− b is a function of x

3.11.2.1 Approximate solution method: Minimize the residual using normal equations
You can minimize with respect to any norm but ‖·‖2 is easiest. If we define b̂ as the orthogonal projection of
b onto R(A),

r(x)2 = b̂2 +
(
b̂−Ax

)2

I don’t think this is right

so we can make b−Ax = 0

r ⊥ R(A) ⇐⇒ r ∈ N(A∗)⊥ ⇐⇒ A∗r = 0

But
r ∈ N(A∗)⊥ =⇒ A∗ (Ax− b) = 0 =⇒ A∗Ax = A∗b
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• A∗Ax = A∗b is the Normal Equation for Ax = b, which minimizes the sum of square differences
between the left and right sides

• Since K(A∗A) ≤ K(A)2, the condition number for the normal equations could be very large

so (
α
β

)
= x = (A∗A)

−1
A∗b

3.11.2.2 Approximate solution method: Minimize the residual using QR

‖r‖2 = ‖Ax− b‖2 = ‖QRx− b‖2 = ‖Rx−Q∗b‖2
In case 2, if we define c = Q∗b

R =

(
R1

0

)
=⇒ Rx− c =

(
R1

0

)
x−

(
c1
c2

)
=

(
R1x− c1
−c2

)
Find x such that R1x− c1 = 0 so

‖r‖22 =

∥∥∥∥( R1x− c1
−c2

)∥∥∥∥2

2

= ‖R1x− c1‖22 + ‖c2‖22 = ‖c2‖22

Which can be found via backwards substitution on

x = R−1
1 c1

3.11.3 Underdetermined case: m < n, m = r

3.11.3.1 Solution Method: SVD
Define c = U∗b and y = V ∗x, so

‖r‖22 = ‖Σy − c‖2

But since Σy =
(

Σ1 0
)( y1

y2

)
= Σ1y1, we set y1 = Σ−1

1 c and let y2 be such that ‖y2‖2 = 0 so that

‖x‖22 = ‖V y‖22 = ‖y‖22 = ‖y1‖22 + ‖y2‖22 =
∥∥Σ−1

1 c
∥∥2

2

3.11.3.2 Solution Method: QR
Define c = Q†b, so

‖r‖22 =
∥∥Rx−Q†b∥∥

2

But since Rx =
(
R1 R2

)( x1

x2

)
= R1x1 +R2x2, with x2 arbitrary since R1 is upper triangular but R2 is

arbitrary. We set x1 = R−1
1 (c−R2x2)

‖x‖22 = ‖x1‖22 + ‖x2‖22 =
∥∥R−1

1 (c−R2x2)
∥∥2

2
+ ‖x2‖22

It is unknown how to minimize this.
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3.12 Arbitrary m,n, r

Using QR,
Ax = QRP−1x = b

We define c = Q∗b and y = P−1x and we want to solve Ry = c(
R1 R2

0 0

)(
y1

y2

)
=

(
c1
c2

)
With R1 upper triangular and R2 arbitrary

‖x‖22 = ‖R1y1 +R2y2 − c1‖22 + ‖c2‖22

So we set y1 = R−1
1 (c1 −R2y2) and with y2 arbitrary

3.13 Linear Programming

Minimize or maximize f0(x) subject to
f1(x) ≤ 0

...
fm(x) ≤ 0

Ax− b = 0

or


f1(x) ≥ 0

...
fm(x) ≥ 0

Ax− b = 0

Solve using Simplex method

4 Nonnegative and Stochastic Matrices

A matrix M = [mij ] ∈ Rn×n is defined as one of the following if the given condition holds for all elements
mij

condition denoted
nonnegative mij ≥ 0 M > 0

positive mij > 0 M ≥ 0
semipositive M ≥ 0 and M 6= 0 M  0

• The absolute value of A = [aij ] ∈ Cn×n is the matrix |A| = [|aij |]

• The dominant eigenvalue of A is the eigenvalue such that |λ| = ρ(A) (but with eval stuff)

4.0.1 Facts

Let A,B,M,N, P,N1,M1 ∈ Cn×n and let M ≥ N  0, let P > 0, let 0 ≤ N1 ≤M1 and let ~v, ~w ∈ Cn

• |AB| ≤ |A| |B|

• |A~v| ≤ |A| |~v|

• NP > 0 if and only if N does not have a row of 0′s

• PN > 0 if and only if N does not have a column of 0′s

• If w > 0 then N~w  0
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• If w  0 then P ~w > 0

• NN1 ≤MM1

• ‖N1‖1 ≤ ‖M1‖1 and ‖N‖∞ ≤ ‖M‖∞
• ‖|A|‖1 = ‖A‖1 and ‖|A|‖∞ ≤ ‖A‖∞

• Put with norms: lim
k→∞

∥∥Ak∥∥ 1
k = ρ(A)

Corollary: If for all k ∈ N,
∣∣Ak∣∣ ≤ ∣∣Bk∣∣ then ρ(A) ≤ ρ(B)

• For any A ∈ Cn×n ρ(A) ≤ ρ(|A|)

• If 0 ≤ N ≤M then ρ(N) ≤ ρ(M)

• If M ≥ 0 then ρ(M) >≥ 0ρ(M [S]) where M [S] is the principal submatrix of M determined by S. In
particular, mii ≤ ρ(M) for i = 1, ..., n

• If P > N ≥ 0, then ρ(P ) > ρ(N) and ρ(P ) > 0

• For a nonnegative matrix M ∈ Rn×n, the ith row sum and jth column sum of M are denoted

ri(M) =

n∑
j=1

mij and cj(M) =

n∑
i=1

mij

Then
min

1≤i≤n
ri(M) ≤ ρ(M) ≤ max

1≤i≤n
ri(M) = ‖M‖∞

min
1≤j≤n

cj(M) ≤ ρ(M) ≤ max
1≤j≤n

cj(M) = ‖M‖1

• If M ≥ 0 does not have a zero row, then ρ(M) > 0

• IF M ≥ 0, ~v > 0, and M~v > c~v for c ≥ 0 then ρ(M) > c

4.0.2 Perron’s Theorem

4.0.2.1 Proposition 1: Let P be a positive matrix.

• If P has a nonnegative eigenvector then this eigenvector and its eigenvalue must in fact be positive

• P can have at most one indepdendent nonnegative eigenvector for any specific eigenvalue.

4.0.2.2 Perron Let P > 0. If P~v = λ~v and ~v 6= 0 and |λ| = ρ(P ) then λ = ρ(P ), ~v = eiθ |~v| and |v| > 0

4.0.2.3 Perron I Let P > 0. Then

• ρ(P ) > 0

• ρ(P ) is an eigenvalue of P

• ρ(P ) has a positive eigenvector

• The geometric multiplicity of eigenvalue ρ(P ) is 1

• ρ(P ) is the only dominant eigenvalue of P
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4.0.2.4 Perron Roots: Let A ∈ Rn×n be a matrix such that A,AT both satisfy all conclusions of Perron
I. Then ρ(P ) is called the Perron Root and there exists Perron vectors:

• (Right) Perron vector: A unique vector ~z > 0 such that A~z = ρ(A)~z and ‖~z‖1 = 1

• Left Perron vector: A unique vector ~y > 0 such that ~yTA = ρ(A)~yT and ~yT~z = 1

Further, if ~v ≥ 0 is an eigenvector of A, then ~v is a multiple of the Perron vector ~z.

4.0.2.5 Perron II Let A,AT ∈ Rn×n satisfy the conclusions of Perron 1 with Perron vector and ~z and left
Perron vector ~y. (Any positive matrix satisfies these properties.) Then

lim
k→∞

(
1

ρ(A)
A

)k
= ~z~yT

4.0.2.6 Perron III LetA ∈ Rn×n be a matrix such thatthere is a rank one matrix S such that lim
k→∞

(
1

ρ(A)A
)k

=

S. Then ρ(A) is a simple eigenvalue of A (its algebraic multiplicity is 1)

4.0.3 Regular Matrices

A nonnegative matrix M is regular (also known as aperiodic or primitive) if there exists a positive integer
k such that Mk > 0, the minimum k at which this occurs is called the exponent. If M ≥ 0 is regular of
exponent k, then for all s ≥ 0, Mk+s > 0.

4.0.3.1 Eventually positive
A real square matrix A is eventually positive if there exists k0 > 0 ∈ N such that k ≥ k0 implies Ak > 0,
and k0 is the power index of A.

4.0.4 Perron-Frobenius Property

A ∈ Rn×n has the Strong Perron-Frobenius Property if the following are satisfied:

• ρ(A) > 0 is a simple eigenvalue of A

• ρ(A) is the only dominant eigenvalue of A

• A has a positive eigenvector for ρ(A)

For any matrix A ∈ Cn×n , spec (Ak) =
{
λk : λ ∈ spec (A)

}
and if ~v is an eigenvector of A for eigenvalue λ

then ~v is an eigenvector of Ak for eigenvalue λk

4.0.4.1 Theorem Let A ∈ Rn×n. The following are equivalent:

• A is eventually positive

• A and AT satisfy the strong Perron-Frodenius property

• A and AT satisfy the 5 conditions of Perron I.

• lim
k→∞

(
1

ρ(A)A
)k

= ~z~yT where Az = ρ(A)~z, ~yTA = ρ(A)~yT , ~z, ~y > 0 and ~yT~z = 1

• lim
k→∞

(
1

ρ(A)A
)k

= S > 0
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4.0.5 Digraphs and Reduceable Matrices

A digraph Γ = (V,E) is a finite nonempty set V of vertices and a set of arcs E ⊆ V × V .
For S ⊆ V the subdigraph of Γ induced by S is digraph Γ [S] := (S,E ∩ (S × S).
A digraph of a matrix A ∈ Cn×n, Γ(A) is the graph with vertex set V (A) = {1, ..., n} and

LINEAR PROGRESS

5 Functions of Matrices

5.1 Definitions

5.1.1 Jordan Canonical Form definition

For A ∈ Cn×n with JCF Z−1AZ where JA has Jordan blocks {J1(λ1), ..., Jp(λp)} with Jk(λk) ∈ Cmk×mk
and

∑
i

mi = n then define

f(A) := Zf(JA)Z−1 = Zdiag(f(Jk(λk)))Z−1

where

f(Jk(λk)) :=


f(λk) f ′(λk) . . . f(mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)


• If any of the derivatives is undefined at any of the λj , then f(A) is undefined.-is this true of al defini-

tions?

• If f is multivalues and A is derogatory (repeated eigenvaules occurring in more than one Jordan
block), the Jordan Canonical Form definition has morethan one interpretaton:

– Primary Matrix Function:= If the same branch for f and its derivatives are taken for each
occurence of an eigenvalue in different Jordan blocks. It is usually assumed that f(A) means the
primary matrix function.

– Nonprimary Matrix Function:= If different branches for f and its derivatives are taken for the
same eigenvalue in two different Jordan blocks. If this is the case, f cannot be expressed as a
polynomial of the matrix, and depends on the matrix Z.

5.1.2 Polynomial Interpolation Definition

Given a matrix A and its distinct eigenvalues λ1, ..., λs, let ni be the index of λi that is the order of the largest
Jordan block in which λi appears. Then let r(A) be the unique Hermite interpolating polynomial of degree
less than

∑s
i=n ni that satisfies the interpolation conditions r(j)(λi) = f (j)(λj) for j = {0, 1, ..., ni − 1} and

i = {1, ..., s}. Then
f(A) := r(A)

• If any of the derivatives are undefined at any of the λj , then f(A) is undefined.

5.1.3 Cauchy Integral Definition

The function f is said to be defined on the spectrum of A if all the derivatives exist at all of the eigenvalues
λj exist. If f is analytic inside a closed contour Γ that encloses σ(A), then

f(A) :=
1

2πi

∫
Γ

f(z)(zI −A)−1dz
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5.1.4 Matrix Function Facts

• The JCF and Interpolating polynomial definitions are equivalent and the Cauchy Integral definition is
equivalent to both if f is anaylitic.

• f(A) is a polynomial in A And the coefficients depend on A

• f(A) commutes with A

• f(AT ) = f(A)T

• For any nonsingular X, f(XAX−1) = Xf(A)X−1

• For a block-diagonal matrix D = diag(A1, ..., An), f(D) = diag(f(A1), ..., f(An))

• If A is diagonalizable with Z−1AZ = D (D diagonal), then f(A) = Zf(D)Z−1

• Let f, g be functions defined on the spectrum of A.

h(t) = f(t) + g(t) =⇒ h(A) = f(A) + g(A)

h(t) = f(t)g(t) =⇒ h(A) = f(A)g(A)

• Let G(u1, ..., ut) be polynomial in u1, ..., un and let f1, ..., fn be functions defined on the spectrum of A.
If g(λ) = G(f1(λ), ..., fn(λ)) takes zero values on the spectrum of A then g(A) = G(f1(A), ..., ft(A)) =
0
Corollary: sin2(A) + cos2(A) = I, (A

1
p )p, and eiA = cosA+ i sinA

• If f has a Taylor Series expansion with coefficients ak and radius of convergence r, then for A ∈ Cn×n

f(A) =

∞∑
k=0

ak(A− αI)k

if and only if each of the distinct eigenvalues {λi} of A satisfy one of the following conditions

– |λi − α| < r

– |λi − α| = r and the series for fni−1(λ) is convergent at λi ∀ i

• Let T ∈ Cn×n be upper triangular and suppose f is defined on the spectrum of T , then F = f(T ) is
upper triangular. Let λi = tii and let Sij be the set of all strictly increasing sequences of integers that
start at i and end at j and let [λs0 , ..., λsk ] be the kth order divided difference of f at λs0 , ..., λsk . Then
fii = f(tii) and

fij =
∑

(s0,...,sk)∈Sij

ts0,s1ts1,s2 × ...× ts0,s1tsk−1,skf [λs0 , ..., λsk ]

5.2 Specific Functions

5.2.1 Matrix Square Root

Let A ∈ Cn×n. Any X such that X2 = A is a square root of A

• Uniqueness: If A has no eigenvalues on R−0 (the closed nagative real axis) then there is a unique
square root X of A each of whose eigenvalues are 0 or lies in the right half-plane and

√
A is a primary

matrix function of A. n this case we call X the principle square root of A and it is written X = A
1
2 . If

A is real then so is A
1
2 . The integral representation of this is

f(A) :=
2

π
A

∫
Γ

(t2I +A)−1dt
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• Existence A necessary and sufficient condition for a matrix to have a square root is that in the ”ascent
sequence” of integers d1, d2, ... defined by

di = dim(ker (Ai))− dim(ker (Ai−1))

contains no two identical odd integers.

• A ∈ Rn×n has a real square root if and only if A satisfies the ”ascent sequence” condition and A has
an even number of Jordan blocks of each size for negative eigenvalue.

• A positive semidefinite matrix A ∈ Cn×n has a unique positive semidefinite square root

• A singular matrix need not have a square root

5.2.1.1 The Identity matrix

• In×n has 2n diagonal square roots diag(±1) with primary matrix functions I and −I

• Nondiagonal but symmetric nonprimary square roots of In including any Householder matrix I−2~v~vT \
(~vT~v) for ~v 6= 0 and the identity with its columns in the reverse order

• Nonsymmetric square roots are easily constructed in the form XDX−1 where X is nonsingular but
nonorthogonal and D = diag(±1) 6= ±I

5.2.2 Matrix Exponential

Let A ∈ Cn×n. Define

eA = exp(A) = I +A+
A2

2!
+
A3

3!
+ ... = I +

∞∑
k=1

Ak

k!

• e(A+B)t = eAteBt holds for all t if and only if AB = BA

• The solution to the differential equaton in n× n matrices

dY

dt
= AY +BY, Y (0) = C, A,B, Y ∈ Cn×n

has the solution Y (t) = eAtCeBt

• A ∈ Cn×n is unitary if and only if it can be written A = eiH where H is Hermitian. H can be taken to
be Hermitian positive definite

• A ∈ Rn×n is orthogonal with det(A) = 1 if and only if A = eS with S ∈ Rn×n skew-symmetric.

5.2.3 Matrix Logarithm

Let A ∈ Cn×n. Any X such that eX = A is a logarithm of A

• Uniqueness: If A has no eigenvalues on R−, then there is a unique logarithm X of A all whose
eigenvalues lie in the strip {z : −π < Im(z) < π}. This is the principle logarithm of A and is written
X = logA. If A is real, then log(A) is real

• Existence If ρ(A) < 1, then

log(I +A) = A− A2

2
+
A3

3
− ... =

∞∑
k=1

(−1)k
Ak

k
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• A ∈ Rn×n has areal logarithm if and only if A is nonsingular and A has an even number of of Jordan
blocks of each size for every negative eigenvalue.

• e( log(A)) = A holds when log is defined on the spectrum of A ∈ Cn×n, but does not generally hold
unless the spectrum of A is restricted.

• If A ∈ Cn×n is nonsingular then det(A) = e( tr(log(A))) where log(A) is any logarithm of A

For A ∈ Cn×m

‖A‖1 = max
1≤i≤m

n∑
j=1

|aij | maximum row sum

‖A‖∞ = max
1≤i≤n

m∑
j=1

|aij | maximum column sum

‖A‖2 =
√
ρ(A∗A)

‖A‖F =
√

tr(A∗A)

For any induced matrix norm ‖·‖ ,
ρ(A) ≤ ‖A‖

If U ∈ Rn×n is unitary, then
‖Ux‖2 = ‖x‖2
‖U‖2 = 1

If A ∈ Cm×n , then
‖AU‖2 = ‖A‖2

also
‖AU‖F = ‖A‖F

5.2.3.1 Rayleigh Quotient

RA(~x) =
~x∗A~x

~x∗~x

If A ∈ Cn×n is Hermitian, then we can compute the greatest eigenvalue

sup
~x6=0

R(A) = max
i
λi

For any A ∈ Cn×m, ‖A‖2 =
√
ρ(A∗A)

For any A ∈ Cn×n, ‖A‖2 = ρ(A)
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