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Ordinary Differential Equation Theory

1 Introductory Theory
An n'" order ODE for y = y(t) has the form

F(t,y',y",..,y"™)=0  (Implicit Form)

Usually it can be written
y™ = fty Yy ™) (Explicit Form)

A solution y is defined on y : I — R with y € C™(I) for some I C R such that
y ™M) = fty (0,9 (1), ") Viel

n is the order of the ODE. It is the highest derivative to appear in the equation.

The ODE is linear if F' depends linearly on v, ..., 3™

n—1

Yy = g(t) + Z a; (t)y D (t)

and is said to be homogenous if ¢(¢) = 0.

The ODE is nonlinear if F' depends nonlinearly on (")

If the solution is defined on whole of R then we call it a global solution

If the solution is defined on a subinterval of R then we call it a local solution

1.1 Senses of Solutions

1.1.0.1 Classical Solution
u' = fin a classical sense if u € C' and v/(z) = f(z) V

1.1.0.2 Weak Solution
u' = finaweak senseifu € Li, and v’ = f in D’ sense.

Classical solutons are always also weak solutions

1.1.0.3 Distributional Solution
u’ = f in a distributional sense if w € D’ and v’ = f in D’ sense.
Classical solutions and weak solutions are always also distributional solutions

1.1.0.4 Regularity of Solutions For v’ = 0 all solutions are classical, weak, and distributional solutions.
For zu' = 0 the solution « = ¢ is neither classical nor weak.
Thus, the regularity of the solution depends on the DE.
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1.1.1 Initial Value Problems (IVP)

A problem is an IVP if it is given in the form

y(a) =0
y'(a) =m
y(nil) = Yn—-1

where a is the lower boundary of the domain.

e Linear IVPs have a unique solution.

Existence of Solution

— Local Existence Theorem or Peano Existence Theorem: If f is continuous on R", then every
(to, ugy ey u(()"‘l)) there exists an open interval (top —¢,to +¢) = I C R with ¢ > 0 that contains ¢,

and there exists a continuously dfferentiable function « : I — R that satisfies the IVP.
— Local Existence Theorem If f is continuous in a neighborhood of (a,~o, ...,7n—1) there exists

an open interval (to —e,tg+¢) = I C R with e > 0 that contains ¢, and there exists a continuously
dfferentiable function v : I — R that satisfies the IVP.

Uniqueness of Solution

— Uniqueness by Continuous Differentiability of f: If Vf is continuous (if f is continuously
differentiable), then the solution is unique.

— Uniqueness by Lipschitz: If f(u,t) is Lipschitz continuous in « then the solution is unique.

Gronwall’s Inequality: For «(¢) continous and ¢(t) > 0 continuous defined on 0 < ¢ < T and vy is a
constant, if u(t) satisfies

u(t) < ug —1—/0 o(s)u(s)ds fort € (0,77

then,  u(t) < ugexp < /O t ¢(s)ds> for t € [0,7]

A generalization allows vy = p(t) to depend on time. Then

t

u(t) < pt) + / v(s)uls)ds = ult) < p(t) + / u(s)o(s)el: v ds

to to
Also, if we consider going backward in time, (again uq constant)

to :
u(t) < ug +/ v(s)u(s)ds,t <ty = u(t) < ugelt’ V()4
t

1.1.2 Boundary Value Problems (BVP)
e A BVP with separated conditions affect multiple endpoints such as in the form
9a(y(a)) =0, go(y(b)) =0

e A BVP with unseparated conditons affect the endpoints simultaneously, such as in the periodic
conditions

y(a) —y(b) =0
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1.1.3 Systems of ODEs

One could also consider solutions to systems of ODEs.
Any ODE can be converted into a first order system of ODEs. Example:

/

x Y2
2" =t + cos(z”)e” becomes y=11 2 | = Y3
" t + cosysze¥?

1.2 Linear Equations

Linear equations are linear in y, and have the form

n

> a;(t)DDy(t) = g(t)

k

. . . d
Otherwise the ODE is nonlinear for some ag, a1, ..., a,, g and D¥ = -

Note that a;(¢) need not be linear.

1.2.1 General solutions

For (a1, as, ..., a, continuous; g continuous; a,, # 0), linear ODEs have infinitely many solutions of the form

Where (y1,y2, ..., yn) are linearly independent solutions to Ly = 0 and y,(t) is a particular solution to Ly = g.

e Linear IVPs have a unique solution.

1.2.1.1 Linear Systems of ODEs Any system of linear ODEs can be viewed as the matrix equation
y' = Ay

with solution
At

¥y =e'c where z(t) = y1(t)
For a vector of arbitrary constants ¢ determined by intial or boundary values.

e If A is diagonalizable , A = VDV~ with its eigenvectors V, then e4tc = VeP*V~1¢. Since V =
(V1 ... V) and we can define arbitrary constants d = V!¢, this becomes

y(t) = eAte = deMiVy + doe™Vo + ...+ dpeivy,

Alternatively you can simply evaluate Ve?!V ~1¢ and take the first component.
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1.2.2 Integraton Methods

1.2.2.1 Integrating Factor
Given

y'(x) + p(z)y(z) = q(z)

Multiplying by
 (@)el P4 plajel Moy @) = ga)el P

Integrating both sides is used with reverse product rule

ywdmf/ﬂmwmm+q

1.2.2.2 Variation of Parameters
Given

y' +at)y +rt)y =g(t)
We find the solutions to the associated homogenous equation (y” + ¢(t)y’ + r(t)y = 0)
Yo = (t) = cry1(t) + cay2(t)

And we want to find a particular solution to v + ¢(t)y’ + r(t)y = g(t) in the form

Yp = (1) = ur (t)y1(t) + u2(t)ya(?)

We let
uwy (H)ya () + ub()y2(t) =0 Condition 1
and so
yp = (8) = uy (O)y1(t) + ur ()i (t) + ua(t)y2(t) + uz(t)ys(t)
Yp = ur(t)yi () + ua(t)ya(t)
Differentiating

Yp = () = ui (H)y1(t) +ua(t)yy () + uz(t)ya(t) + ua(t)ys (¢)
Plugging this into the original equation and cancelling gives

uiyy + uhyy = g(t) Condition 2

Solving the system given by the two conditions gives

r_ y29(t) r_ y19(t)
Uy = — I / Ug = I /
Y1Ys — Y2y Y1Ys — Y2y
SO y (t)
Uy = —/7?{29( ) -dt Uy = /72{19 -dt
Y1Ys — Y2y Y1y — Y2y

And so our particular solution is

vplt) = _yl(t)/wdxﬁ-yz(t)/wdx

Y195 — Y2y] Y1Ys — Y2y]

So our general solution is
Y =ye(t) + yp(t)
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1.2.2.3 Substitution The Bernoulli equation
y'(t) +p(@)y = q(z)y"
Can be solved with the substitution v = y' "

u=(1-p)(p(x)u+q(z))

Which can then be solved with other methods.

1.2.3 Exactly Solvable Cases

First Order Linear Equations

y' +p(t)y = q(t)
The general solution is
S /t (u) M (u)du + ¢
SN TION M(?)

for M(t) = el )45 gng any constant C.

Linear Equations with Constant Coefficients

n

Ly = Z a;Diy =0
§=0

Solutions exist in the form
y(t) = e

where ) is a root of the characteristic polynomial

P =) a;N
§j=0

If roots are repeated, the solutions associated with the same root must take on forms that are orthogonal to
one another, such as

y(thr =M, y(t)r =t y(t)s = 2V
The pair of solutions associated with a pair of complex roots must be real, and so for a pair of roots
A£ (a+1i8))

y1(t) = e cos(t) ya(t) = e*'sin(Bt)

Euler Type Equations

Ly = Zaj(t —to)ijy =0
7=0

Solutions exist in the form
y(t) = (t—t0)*  t#to
Where A can be found by using this solution form in the equation, which forms the indicial equation

iAjtj =0
j=0

Where A,, = a,, but the other coefficients depend on the nature of the ODE. If the indicial equation has...
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e two roots, then
y(t) = c1(t —to)™ + ca(t — 1)

e one root, then one must perform reduction of order. However, solutions typically have a solution that
looks something like
y(t) = er(t —to)* + ca(t — to) |t — to]

For higher algebraic muliplicities of the root, you will have additional solutions {(t — to)*(In [t — to[)2, ..., (t — to)*(In [t —

e a complex pair of roots » = \ £ iw, one must solve for the real solutions. Typically you end up with a
solution that looks something like

y(t) = c1(t — to) cos(wln |t — to|) 4 cot — o) sin(wIn |t — to))
For higher algebraic multiplicities you can solve for real valued solutions of the form
(t —to)* cos(wn |t — to|) In |t — to| ,(t — to)* sin(wIn |t — to|) In |t — o], ...
oy (= t0)* cos(wn |t — to])(An [t — to|)™ 1, (t — to)* sin(wIn |t — to|)(In |t — o)™ ?

1.2.3.1 Example

azy" + bxy' +cy =0

Yields the indicial equation
aX+(b—a)l+c=0

Saya=1,b=—6,c=10. Then A\; 2 = 2,5 and

y(t) = 172 + cox®

Say a=1,b=—-9,¢ = 25. Then A = 5 and we must additionally solve

y(z) = 2°u(x) v=1u

which has the solution
y(z) = 2°(c1 In |z + ¢3)

Saya=1b=-3,c=20.Then A =2+ 4

y(x) = c12? cos(41n |z|) + cox? sin(41n |x|)

1.2.4 Relation between Euler Equations and Constant Coefficient Equations

Lety : (tg,00) = Rforand Y : (—oo,00) — R be functions of ¢ and « respectively. Assume they are related
by a substitution = = ¢'. That is, y(t) = Y (x). Then the Euler equation for y can be related to the constant
coefficient equation for Y.

1.3 Nonlinear Equations

Nonlinear equations such as
y/ = y2 with u(to) = Ug

May have a unique solution, but usually only local solution.
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1.4 Nonlinear ODEs

Nonlinear ODEs hav the form
F(t’ y) y/7 AR y("‘)) = 0
where F depends nonlinearly on (™). It may have an explicit form of
y" = fty Yy ™)

y(a) =0

y(n—l) (a) = Yn—-1

2 Solutions

2.1 General Solutions

General Solutions are the set of all solutions to a DE. Generally, a n'" order D’s general solution has n
arbitrary constants.

Normalized Solutions: The solution set (for example y(z) = c1y1(z) + coy2(x) to a DE such that when
ylx=0)=0and y'(z =0) = 1.

2.1.1 Well-Posed Problems

A problem is well posed if
e There is one solution (existence)
e The solution is unique (uniqueness)

e The solution depends continuously on the data (stability condition)
Small changes in the intial or boundary conditions lead to small changes in the solution

Wronksian: The determinant of the Fundamental Matrix of a set of solutions to a differential equation.
A set of solutions to a DE are linearly independent if the Wronskian identically vanishes for all z € I. Note
that W = 0 does not imply linear dependence.

For f,9, W(f,g9) = fg' — gf’. For n real or complex valued functions fi, fa, ..., f, which are n — 1 times
differentiable on an interval I, the Wronksian W (f1, ..., f,) as a function on I is defined by

fil) o falo)
, fil) .. fi(@)
W(flvvjn)(“L): : : r el

@) (@)

3 Advanced Theory

3.1 First Order Equations

Consider
X' = f(X)
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3.1.1 Intervals of existence

Let F(z) = ffo f(g)' If x = ¢(¢) is a solution to the ODE, then F(¢(t)) =t so F(¢(0)) = 0. By the inverse

mapping theorem,
Flx)=t+ty = 2=F t+ty) = x=F (t+ F(x0))
Consider two cases

o If f(zo) =0then
P(t) = zo V t,u(t) = f(zo) = f(B(2))
o If f(xg) # 0then f € C(R) = f # 0in some neighborhood about zy. Assuming f(z) > 0 on

(a,b), then F'(z) = ;7 > 0, a < z < bimplies F(z) is monotone increasing so F~'(x) exists and

#(t) = F~1(t) is a solution.

4 New Notes

Basic Existence and Uniqueness

LetU € R""! be open, f € C(u), and (ty, o) € U. If f satisfies a Lipschitz condition in z uniformly in ¢ on
some closed spacetime cylinder S that is contained in U, then there is an interval [to, to + To] C [to, to + T
and a unique solution of #’ = f(x,t),z(t9) = xo. Picard iteration converges uniformly to some ¢(t) that
satisfies the IE

o) = i s (t) = Jim (0 + [ 00061 ) = 04, 1G5 o))
Suppose (1), (t) satisfy 0
o) =t [ 1o 00 =1+ [ 1o,
fort € [to,t1], then 0 0
160) =0l < oo~ + | L1oe) — visl s

Satisfies Gronwall’s inequality with u(t) = ||¢(t) — ¥ ()|, uo = ||z — 21| , and v(s) = 1. Thus

19 =¥ Ollc < o —all 470 = xyae 1900 =¥ (Ol < o — ] €274

Soxz; =29 = ¢(t) = ¢(t), and the solution depends continuously on the initial data.
Let ¢(t) be the solution of o’ = f(t,x), z(t9) = xo and let ¢ (¢) be the solution of ' = f(t,x), x(t1) = =1
Suppose both solutions exist of a common interval (a, b) with to,¢1 € (a,b). We know

t t
ot) =zo+ [ f(s,8(s))ds,p(t) =a1+ [ [f(s,0(s))ds,a <t <b
to tq
Without loss of generality, assume ¢y < t1. So
t t
o0 (0 =01+ [ fls.0(6)ds [ fs,0(9)ds
to t1

—oo—zi+ | (s d(s)ds + [ f(5,0()) — Fts. w())ds

to

[6(t) = ()l = llzo =zl + [t2 — tol £ (s, (s)llc + L(E = t1)[1f (s, 0(s5)) — f(s,4(s)ll o
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So letting pu = ||zo — z1|| + [t1 — to | f(s, ¢(s)||» @and V(s) = L(t — t1) , we use Gronwall’s to obtain

lo(t) = (@)llc < (lwo = z1ll + [t = tol £ (s, é(s)ll ) €750t > 14

So x = ¢(t) = ¢(t,to, o). Thatis, ¢ is a continuous function of the problem parameters as well as ¢.
Differentiation on R™ Given F : RN — RY, we say F(z) is differentiable at X, if there exists a linear map

(matrix) A such that

. F(xo +h) + F(xo) — Ah|

|
o ol ’
We denote DF (zg) = A = 254(%y) if F = (Fy, ..., Fy)".

— Oxj
F is differentiable at R If F is differentiable for all ¥, € R" then DF(X) is a matrix valued function.
F € CY(RY) if 2 — DF(X) is continuous with respect to some norm ???
feCU) = D,f € C(URN*N) fis locally Lipschitz continuous in = with respect to t. That is, given
a compact subset U, C U, there is a constant L > 0 such that

||f(t,l’) - f(tay)” § LUo”x - y” s v (t,l’), (t,y) € UO
We assume Uj = [«, 5] x K where K is compact and convex. Let z,y € K and s € (0,1) and define
F(s)=f(t,e+s(y—x)),0<s<1

By the Chain Rule,

F/(s) = 6+ s(y — ) = [t + 5 — 2] [0~ 2]+

Now consider F(0) = f(¢t,z), F(1) = f(t,y). So

F(l)—F(0)=/O F'(s)ds <= f(tvy)—f(tw):/o [falt, 2+ sy —2))Inwn - [ = 2)] +vxa ds

solet L = |||l fz(t,z + s(y — 2))| Il

1
1ty — Ft 2l < / Llly - z| ds < Llly — 2|

Example: v/ = y% = f(y)
f@) = fy)=f(s)z-yy<s<az

We see f’'(y) = 2y, so these intervals all have different constants.

4.1 The First Variational Equation
Consider IVP1 2’ = f(t,z) x(ty) = mo. If f € CY(U) then x = ¢(¢, 7, €) is differentiable in all three variables.

0 0 dy

9] 0
&87(]5 = fu(t, 0) - qu = y(t) = Eqﬁ(tm &) solves i A(t)y

We call % = A(t)y the First Variational Equation, where A(t) = f.(t,x, 7, £).
Performing the same thing for a%

dX
So ¢(t, 7, &) satisfies
0
(b(Ta Tag) = € - aig(b('rv T, g) =1
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Also, 5 5 5
(1, 7,8) =§ = &¢+ i 0 = E¢ =—f(r,6)
o(t, 7, &) has partial derivatives determined by
9y =Al)y gd X' =A)X
or" " |y(r) = —f(1,€) 96" | X(0) =1
We want to show
h
tin SXCTEN o o m by = it €+ ) — e ) — X ()
h—0 It

Let (7,€) € B(to, zo;a1,b1) and choose h sufficiently small & € R™ so that (1,£ + h) C Ry = B(to, xo;a, b).
We use
¢(t) = ¢(t7 T, 5) ¢h (t) = ¢(t7 T?f + h) A(t) = f:c (tv d)(tv T, 5))

These are all defined on [r — T, 7 + T with (¢, #(t)) € R? and (¢, ¢ (t)) € R fort € [ — T,7 +T] . Using
L=|lllf«(t,2)|1llc and [A@)]| < L.te[r=T,7+T].

16(t) — on(®)l| < (1] 257
o(t) = € + / £(5,6(s))ds

o0 =€+t [ sl ono)as

X(t) =1+ /t A(s)X (s)ds

So
QU6 h) = / (f(5,6n(5)) — F(5,6(s)) — A(s) X (s)h) ds

Using f(t,z) — f(t,y) = [y folt,z +o(y —2)) - (y — x)do,
||f(t,.%‘) - f(t?y) - fw(t’x) : (y - .’L‘)H S /O Hfaa(tvx + U(y - .’IJ))) - fac(t’x)H Hy - I‘H dO’

Since f.(t,z) is continuous on the compact set R», it is uniformly continuous on R,. It follows that f, (¢, )
is uniformly continuous on Rs.
We seek to use Gronwall’s inequality. We see that

QU6 1) = / (5,8 (5)) — F(5,6(5)) — A() (n(5) — &(s))) ds + / A(S)Q(t,7. €, h)ds

Continuity of f allows us to pick ¢; < #_zr s0 that

t t t
Q| < / erlén — | ds + / LIQI ds < exT|[h]| 27 + / LIQ] ds

Using Gronwall’'s inequality, we get

QI < exT|[hl| e*Te™ < e

10
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4.1.0.1 Differentiability With Respect to a Parameter Consider

o = f(t,z,\) zeRN
x(r) =¢
FiUXA—RY UCRNTLACRE (1,6) eU

Let f € C*(U x A) . Solutions of IVP are functions X = ¢(t, 7, &, \).
Solety’ = 0,3(7) = A, and we recast our problem as

. (X o (XN [ ftz) ) Lo (TN _
(Do = (3)=(5) 0 an=(5) 2= et

So if we have
a(t) — ( % (1%1/)(157777)) %f(tﬂ/}(tv’rvr)/)) )

Opxn OPXP

That is,
ze wy ) fe I Te Ty , )
<0 1p>:(0 0)(0 Ip>‘:””f:frxé7%=fmwx+fx

With initial conditions z¢(7) = I, z(7) = 0.

4.2 Continuation of Solutions

Theorem. If f € CY(U) and z = ¢(t) is a solution of our above IVP, defined on an open interval (a,b)
containing to. If
{t,p(t)):a<t<byCKCU
for some compact K then ¢(a™) = lim+ ¢(t) and ¢(b~ ) both exist as finite values with (a, ¢(a™)), (b, #(b7)) €
t—a

U. Hence ¢(t) extends as a continuous function to [a, b] which can be further extended as a solution of
' = f(t,z) to a larger interval.
Proof. Let M = max |f(t,z)| : (¢,2) € K. We know

¢wrwwn:/2ﬂawmmﬂ<u<m<b

S0 ||p(t2) — &(t1)||o < M |ta —t1|. Thus ¢(t) is uniformly continuous thus ¢, — b produces a Cauchy
sequence ¢(t,,) which converges by completeness to ¢(b)
If s,, us another sequence such that s,, — b,

$(b) — Hlsn)

< e = ot

o Tleltn) = d(sn)llc =0
Thus the limit is unique.

Corollary. If x = ¢(t) is a solution on (a, b) and ¢(t) cannot be extended beyond b as a solution, then (¢, #(t))
must leave every compact subset of U as ¢t — b™. Analogous statements holds at the left endpoint a.

11
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4.2.1 Extension of Solutions
Suppose Q = (a,b) x RY, f € C(Q), —c0 < a < b < oo and satisfies a Lipschitz condition in x, uniformly in ¢
||f(£E,t) - f(t7y)|| < L”‘T - y” ’ v (t,l’), (t7y) €

Then solutions of ' = f(¢,x) exist on the entire interval (a,b). Notice that for all ¢t € [a,b] C (a,b) and
r € RV,

@)l =1 @0 + ¢ 2) = fE0I < max [LfE 0 + Lzl = Ma,s + L]

So for any 7,t such that a < 7 <t < g implies

601 <16 + [ 15,0 ds < o) +Mas(5 - )+ [ Lio()] ds

Thus ||¢(t)|| is bounded on [«, 5] for any compact subinterval of (a,b). Thatis (¢, #(¢)) cannot leave every
compact subset of {2 on any interval of the form [«, 5] C (a, b) so the solutions extend to (a, b)

4.3 Existence

o' =f(tz),feC(Q)  a(r)=¢
Consider the space-time cylinder R = B(7,¢ : a,b) C Q. Let M = (tm?XRHf(t’x)H . a = min{a, & }.
,T)E
Choose a partition {t;}* of [, 7 + a].
T=th<th1 <..<tn 1 <In=7T+«
Define an approximate solution ¢(t) by
D(t(j+1)) = O(t5) p (85, 6(t)) (41 — t5),5 =0,..., N = 1

with ¢(tg) = €. Use linear interpolation to get

o(t) = o(t;) + (L5, o)) (t = t;), 1 € [tj41, 1]

Notice, ¢(t) is continuous, but not differentiable at the nodes {¢;}

5 Linear Systems

{i’ — A(t)R +g(t)
X(1)=¢

where A € R"*", g € R". A € C((a,b),R"*™) and g € C((a,b),R™). There is a unique solution of the IVP
for every (7,¢) € (a,b) € R™ that is valid on (a, ). Under the above assumption, the set of solutions to the

—

homogenous problem (g¢(t) = 0) is an n-dimensional linear space. So if ¢(t) is the solution to X' = A(f)X,
R(1) = &;, then ¥(t) = 3. &di(t) is in the Span{(gl(t), ...,$n(t)}. Thus we have a basis for our solution
i=1

space. Denoting ®(t) = (¢1(t), ..., on(t)), then

O'(t) = A(t)®(t)

12
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5.1 Determinants
Properties

od

5.2 The Homogenous Case

5.2.0.1 Superposition Principle
If 21 (), z2(¢) are solutions then so is z3(t) = c1x1(t) + caz2(t) for any cq, cs.

5.2.0.2 General Solution

A fundamental set of solutions is a set {z;(¢)}, such that they form a linearly independent set of solu-
tions. Then z(t) = c1z1(t) + ...chx,(t) is a general solution (all solutions can be written in this form). The
Fundamental Matrix is

X)) = (z1(t)y ey Zn(t) ) xn

Note det [X (¢)] # 0, and any solution z(t) can be expressed as X (¢)¢ for some ¢. This means any Y (¢) =
X (t)cis also a fundamental matrix with det [Y'(¢)] = det [X (¢)] # 0 .

e If X(¢) and Y (¢) are fundamental matrices then there exists a nonsingular C such that Y (t) = X (¢)C.
Infact, C = X~1(¢)Y(¢).

5.3 The Inhomogenous Case
R = A+ g(t)
X(r) =¢

e If 1,99 are two solutions, then ¢ = ¢ (11 — 19) is a solution of the homogenous case for any c. That is
if we know the fundamental solution set for the homogenous case, we can simply add on a particular
solution to the inhomogenous problem.

5.3.0.3 Variation of parameters
Let X (¢) be a fundamental matrix. Consider z(t) = X (¢)c.

— - —

' (t) = X' (t)e(t) + X (¢)c'(t) = A(t)x(t) + X(t)c’(t) = A@)z(t) + g(t)

—

So let ¢/(t) = X ~1(t)g(t) since det [ X (¢)] # 0 for all . So we have a particular solution

zp(t) = X(t)c(_%) = X(t)/ X~Y(s)g(s)ds, T € (a,b)

Note z,(t) = 0. So any solution of the inhomogenous problem can be written in the form

2(t) = X ()& + X(t)/ X (s)g(s)ds

13
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However if we consider the IVP with z(7) = &, then pick ¢ = X ~1(7)¢ so

2(t) = X(O) X1 (r)E + X (1) / X(s)g(s)ds

and we see

or) = XX e+ X(7) [ X(gls)ds = ¢

5.3.0.4 State Transition Matrix
Now denote the State Transition Matrix ®(¢,7) = X (t)X ~!(7) and we see since

t

z(t) = ®(t, 7)€ +/ O(t,7)g(s)ds

T

and thus ®(¢, 7) solves the problem

—

{X’ = AHX
X(r) =

By construction, Phi(t) is uniquely determined.

5.4 Special Case: Constant Coefficient System

If A(t) = A is independent of ¢, then any solution ¢(t) is still a solution when translated so you can take the
initial time to be 0 via the translation ¢(t — 7). So then ®(¢,7) = ®(¢ — 7). So we have

P = Ad
o(0) =1

Thus the solution is ®(¢) = e, where the matrix exponential can be defined in one of three ways:
° eAt — i %An
n=0

e X(t) = et satisfies X' = AX, X(0) =1

e Use an eigendecomposition A = V1AV to get !4 = VelAV 1
We note the properties of the matrix exponential

° %em = Aet4 and @4 =

o Actd =ctAAforallt € R

e If AB = BA, then e?ef = ¢A+E

o chidet2A — o(ti+t2)A for gl ¢4, ¢,

. (e“‘)_1 =c tforallt

o det (et4) = ! (4 for all ¢ (Abel's Formula)

. . —1
e If Bis nonsingular, B~ 'et4B = ¢tB AP

14
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)

5.5 2D Constant Coefficients Case
X'(t) = AX(t), A = (

a
Cc

—

Let X = ¢(t, z¢) be the solution satisfying X(a) = x¢

5.5.1 Invertible Matrix Case

If det A = 0, then the only rest pointis X = 0. If T = a+ d and D = ad — bc, then Ay = (T +£VT? - 4D),
and we consider various cases and their subcases.

e T2 _4D >0

- A_>0,A+ >0(T > 0,D > 0) Moving along parabolas away from the oringin
- A_ < 0,2\ <0 (T <0,D > 0) Moving along parabolas toward the origin
- A <0< Ap <0 (D < 0) Mixed behavior

e T2 _4D=0
1 0
S Y
oo (10
1 ¢
— otd _ At
e — o (0 1)

e T2 — 4D > 0 We have etr ( (S:g;((z)) ) = re®! ( Z?i((gigf)) )

— T > 0 spirals outward from the origin
— T = 0 rotates about the origin at fixed radius
— T < 0 spirals inward toward the origin

5.6 Periodic Linear Systems
Consider
= At)x, At +T) = A(t)
5.6.0.1 Floquet Theory Let A(t) be an n x n continuous T-periodic matrix.
o If &(t) is a fundamental matrix then so is ®(¢ + 7)C for any nonsingular constant matrix C'.

e If ®(t) is a fundamental matrix then there is a nonsingular T—periodic matrix P(¢t) and a constant
matrix R such that ®(t) = P(t)e!?

Proof: (1) f & = ®(¢t+7), then W' (¢) = ®'(¢t) = A(t+7)P(t+7) = A(t)P(¢) and det (¥ (¢)) = det(P(¢+7)) # 0.
(2) Since ®(t) and ®(t 4 7) are both fundamental matrices there is a nonsingular C such that ®(t + 7) =
®(t)C, with C = @~1(0)®(t). Since C is nonsingular, C has a logarithm. Let R = *log(C) so that
el = ¢logeC — . Now define P(t) = e~ so that ®(t) = P(t)e'". Note that P(t+T) = ®(t+T)e~ t+TE =
O(t)Ce TR R = ®(t)CO~ e = P(1).

15
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5.6.1 Monodromy Matrix
There exits a C such that X (¢ + 7) = X (t)C. Let R = £ 1og(C). This implies

P = A(t)d

O(tg, tg) =1

X(t)=Pt)e'?, d(t,t0) = X(1) X L(ty) — {
The Monodromy Matrix is
M(to) = ®(to+ T, to) = X (to +T)X " L(to) = P(to+ T)ellot D Eet0Ep=liy)) = P(ty)eT Re 1)

If X(to) =1I,then P(ty) = I so M = ™%, Also, if X(0) = I, then X(T) = X(0)M = M.

5.6.2 Invariants for Periodic Systems

Let X (t) = P(t)e'? as before, and suppose Y (t) is another fundamental matrix. Then we know there are
constant nonsingular matrices B, C' such that

Y(t) = X(t)B, Y(t+T)=Y(t)C
We have
Yt+T)=X(t+T)B=Xt)CB=X1)e"*B=Y(t)B'e"fB = (' = B 'e¢"EB = ¢TB 'RB

So then using previous information, B—'TRB = 1 log(C) so then we see Q(t) = Y (t)e~*# ' £B is T—periodic.
Thus,

e Any fundamental matrix Y (¢) as the form
Y (t) = Q(t)e'”, S=B"'RB

where Q(t) is nonsingular and T—periodic and S is a constant matrix that is unquely determined up
to similarity transforms (and branches of the logarithm).

e The eigenvalues of S are the characteristic exponents

e The eigenvalues of ¢ are called the Floquet multipliers. Note that if \ is an eigenvalue of S then
p = T is an eigenvalue of e75. If Re(\ < 0, then |p| < 1.

Assuming X (0) = I, P(0) = I.
X(t) = Pe'®ny = X(nT) = P(nT)e" iy = (eTR)" n
Let = a1y1 + aays + ... be the eigenvectors of e”%. So then
X(t) = (eTR)nyl + .. =a1ptyr + ..

So we see if |p;| < 1 for all 4, then lim X (nT) = 0 since

IX®N < Klla(nD)]|

So X (0) = I implies M = X(t) and the eigenvalues of M are the Floquet multipliers.
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6 Dynamical Systems

Consider autonomous systems
= f(x), f QRN feCH(Q),z2(r)=¢€Q
o(t, T, &) denotes the unique solution. Let ¥ (t) = ¢(t — 7,0,&) then

'l/)/(t - T, 0,5) = f(d)(t - T7Oa£)) = f(%b(t))aw(T) = 5
This implies ¢(t) = ¢(t — 70,&) = ¢(¢, 7,€). So we let ¢(¢, 7) denot ethe solution of

o' = f(x),2(0) = ¢

Terminology, The orbit (or trajectory) through ¢ is the curve {(¢, ¢(¢,€)) : a(§) < t < B(€)} where (a(s), B(s))
denotes the maximal interval of existence.

Example: ' = (1 — ) has solution z = ﬁ and so for £ #£ 0, C = % (0 < & < 1). We see that

-1
C>0 = a(s) = —00,8(s) = 0. £ <0 = =z(t) is defined on (log (1 - %) ,00). £€>1 = xz(t)is
defined on (—oo, log (1 - %)).

6.1 Straightening the Flow of a Vector Field

dx
Ezf(x) f(zo) #0

If f(zo) # 0, then there is a change of variables to y such that locally, %f(xo) everywhere along the plane
perpendicular to f(zo). Let fo = f(z0), and its jth component is fo; = f;(x¢). Consider y = £ + ¢ fo, where
EeP={(cR": (£—m0)" fo}. This is an orthogonal decomposition of y since y — zo = & — zo + t fo,
where £ — zp L fo. This implies

AT
P Ut ) 8 TP N ST
ol

Now = = ¥(y) = ¢(t,&) where t = t(y), & = £(y), where ¢(t, &) are defined by 2’ = f(z),z(0) = £. By the
chain rule,

o _ 960t 90 _

F(6(t,5)) + e(t, €) (ej Jo; fo)

dy; Ot dy; €y | fol? fol?
ot d (y—z0)Tfo ¢ 0 foj
— = = =—(y—tW)fo) =e — —5f
dy; i | foll? dy; Oy, T P

At y = 20, we have ¢(t(x¢), &(z0)) = ¢(0,20) = zo. ¢e(t(x0),&(z0)) = ¢£(0, &) = I. This implies

2
O = Js; f(xo)+fl6j Jog fo]

9y, Il foll® I foll?

By the inverse function theorem, the map = = ¢(y) is locally invertible (a diffeomorphism). If y € P, say
y=¢ € P,thent =0and ¢ =y. This implies

9%
dy

fi

©O=lerta(=0) et I=HRU ) sl )= L)
0
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This is a rank one perturbation of the identity. This is analoguous to

_ 1
(I +wT) 1:I—uvT(1—a+a2—...):I—1+ uv?, a=u’ # -1
!

Soforz =(y) < y=v¢ ()

fay=E oy (M)_lf(x)

T dt oy dt dat — \ oy
Along P,

dy_<l+(f—fo)

dt 1ol f0T> FE&)=f—~fofo

implies = ¢(0,£) = ¢

6.2 Group Properties
Consider the system
' = f(x) z(0) =¢ feCci),QeR",Q« M, solution: = = ¢(t, &) STAR!
The semi-group or group property is: ¢(t + s,&) = o(t, ¢(s,&))/
Pt : Q= QP(t) = Pt 0 ds, po = id

Consider ¢ : R x Q — Q solutions all defined on R.
Consider 2’ = z(1 — z). Let T(€) = In (1 - %)

_Jmoo &< _ )T £<0
a(f){T(g) £>1,5(§){OO £>0

This defines a set W = U(a(€), B(€)) x {€} ,E €R. & : W — R, (t,2) — b(t,2)

6.3 Properties of the Flow Generated by STAR
° d(t+5,8) = oL, 9(s,8))

¢ Orbits cannot intersect transversally (ie with different tangent directions)
The trajectory of a solution is the curve {(¢, ¢(t,s)) : t € (a(§),8(£))} C R x Q. The orbit of a solution
is the curve {¢(t,€) : t € (a(€),5(£))} C Q.

o If ¢(t1,£) = o(t2,&) for some ¢ # to, then ¢(¢,€) is periodic. Assume to > t; and set ¢ (t) =
ot + 11,8), ¥2(t) = B(t + t2,€). Then ¥1(0) = 2(0) and i(t) = f(¥1(t)), ¥a(t) = f(¥2(t)) so
Ui (t) = 12(t)

¢(t+t17£) = ¢(t+t275)7 Vi

Sett' =t +t4,
O(t', ) = ¢(t' +ta — t1,8) = ¢(t' + T,€)
So we have a period ¢t — 1.
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6.3.1 Terminology

Q is the phase space or state space

A point =y such that f(xzo) = 0 is called a critical point or equillibrium point, rest pt, steady state, fixed
pt
A critical pt x( is said to be non-degenerate if there is a neighborhood of x( that does not contain any

other critical points.
Note if D f(z) is non-singular, then z; is isolated by the inverse function theorem.

6.4 The Pendulum Equation

(5) (450 )

The rest points are F(,0') =0 < 0 =nn,n € Z,0' = 0. This equation can be seen as

2
0" + %sin(@) =0 — (0)? + fg(l — cos(0)) = const

that is, we notice the energy E(6,6') = (6')? + %(1 — cos(#)) along an orbit is constant. So the orbits are
the level curves of the energy. We notice that E(6,0’) is 2r—periodic and symmetric about both axes.
Consider the solution through (0, 6) where 6, > 0

2
E0,0) = E(0,0)) =0, = 0 = \/962 - fgu — cos(0))
We have three cases
e 0< 0 <% thereisaf e (0,m)std =0
o %9 < 0, there is no such value. That is, ¢’ > 0 always
o 02 = 4—Lg
http : //dmpeli.math.memaster.ca/Matlab/CLLsoftware/Pendulum/Pendulum?2.gi f

6.5 Critical Points

A critical point z is said to be Lyapunov stable if for any given ¢ > 0 there is a § > 0 such that for all points
€ € B(x0,9) = {x € R" : ||l — 20| < d} the solution of

' = f(z),z(0) = &, (with solution ¢(¢,&)) = [|¢(t,&) —zol| <eViE>0
A critical point zq is said to be asymptotically stable if it is stable and there is a number ; > 0 such that

¢ € B(wo,d0) implies lim ¢(t,€) = xo.

6.5.0.1 Theorem Consider 2’ = Az. If the real part of the eigenvalues of A are all negative, then
2z = 0 is an isolated rest point that is asymptotically stable (in fact, exponentially stable) since ||¢(¢,&)|| <
Ke=1t||¢] . So given ¢, choose § = £ so

6t &) <Ke MS<Ks=et>0

So z = 0 is stable. And ||¢(t,&)|| — 0ast — 0so ¢(t,&) = 0ast— occ.
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6.5.0.2 The Principle of Linearized Stability Suppose z, € Q is a critical point of f(x) (f(zo) = 0). Let
A= f'(z9) sothata;; = %’;(xo). If all of the eigenvalues of A satisfy Re()\) < 0 then zq is an asymptotically

stable rest point of 2’ = f(z). Proof: We consider the variational system obtained by changing coordinates
y=1x—1x9 = ¢(t) — zo . This satisfies

y' =2 = f(z) = fy+ao) = f(y+zo)—f(w0) = ['(x0)y+h(y) = Ay+h(y) h(y) = f(y+zo)—f(z0)—f'(x0):

Clearly z = xz is asymptotically stable if and only if y = 0 is an asymptotically stable rest point of y =
Ay + h(y). We see that there exist K > 1, a > 0, st ||e!*|| < Ke ®'. Let ¢ > 0 be chosen so that
o < %. Since f' € C(Q) there is a dy € (0,¢) such that || f'(zo + sy) — f'(x0)|| < o fory € Bs,. Choose
§ € (0,60K 1) and consider the solution y = 1 (t) of (2) satisfying yo € Bs observe that

h(y) = / £ (w0 + sy)yds — f'(zo)y = / (' (20 + s9) — '(z0))yds = |Ih(w)]| < olly]

We now write for some b > 0,

t
b(t) = e'yo +/ =) An(p(s))ds  0<t<b
0

Since § < dy, thereis a b > 0, such that || (¢)|| < dp SO

t
Il < Ke 6+ K / ) g ap(s) | ds
0

Using Gronwall’s inequality,
ey(t)] < KéeKt = |[u(t)]] < Kde (@Kt <55 <, 0<t<b

Define 8 =sup{b > 0: ||[¥(t)|| < do,0 <t < b}. We must have 3 = co otherwise we reach a contradiction.
If 8 < oo then we obtained, by the same argument as above, || (t)|| < K < §p, 0 <t < §then there is a
b> pst|v(t)] < do, 0<t<b. Therefore for an autonomous system

o Y1) <K&<by<et>0

o [Y(t)| < Kée (@Kot >0, s0 Jim 1)(t) = 0=
— 00

6.5.1 Non-Autonomous Systems

¥ = f(t,)
For a solution = = ¢(t), let y = = — ¢(¢)

dy
i A(t)y + h(t,y)

h(t,x) = f(t,y+ (1) — f(t,0() — fa(t, 0(t))y

We want to show ||h(t,y)|| < olly|| for small o > 0.

Let V : B(r) — R be continuous and positive definite. Then there are functions 11,1 : [0,7] — [0, +-0c]
such that 1, (0) = ¥2(0) and ¥1(||lz]| ) < V(z) < v¥a(]|z|| ). These functions are continuous and strictly
monotone increasing. Note 11,1, have inverses with ¢;(||z]| ) = ¢ <= |lz|| = ¥; ' (c), hence their level
surfaces are spheres.

Proof: Let s € [0,r] and define m(s) = min{V(z):s <|z|| <r}, M(s) = max{V(z): ||z|| <s}. so
m(||z]] ) < V(x) < M(||z|| ), x € B(r). Also, m(0) = M(0), m(s) > 0, M(s) > 0 for s > 0 since V is
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positive definite. Also the functions are continuous. We show this for m(s). Let e > 0. Since B(r) is
compact V : B(r) — R is uniformly continuous. Hence there is a § > 0 such that |V (z1) — V(z2)| < €
provided ||z; —z2]| < 4, for all z1,22 € B(r). Consider 0 < s1 < so < r, with |s; — s3] < d. Since
{z 50 <|lz|| <r} C{x:s1 <|z|| <r}, we have m(s1) < m(s2). We want to show m(s3) — e < m(sy).
Suppose z € {z: s1 < [lz]| < sz} and setz = sypi-. Then ||z|| =s2 80 V(2) = m(s2). Also,

T T
T ==zl ) = e -2l =s2—|lzf] <s2—-s51<6

X
zme=spr el el

El
SO

V(z) = V(z)|<e = V(z)>V(z) —e>m(s2) — ¢
This shows V() > ma(s) —eforallz € {z: s < |z|| < s2}. Thus we can conclude
m(sz) —e <m(s1) < m(sz) <m(s2) +e€

so then |s; — s3] < § implies |m(s1) —m(s2)| < e. We have m(s), M(s) satisfying all of the required
properies except for the strictly monotone increasing property. To arrange for this we define v (s) = 2m(s)
and ¥ (s) = (s + 1)M(s) so these are strictly increasing.

6.5.1.1 Regularity of Sub-Level solutions LetV : B(r) — R is continuous and positive definite and set

S = {:c € B(r):V(z) < c}. Since V(0) =0, S. # 0, for all ¢ > 0. Let 41,15 : [0,7] — [0, 0] be continous

strictly increasing functions such that ¢ (||z]| ) < V(z) < ¢a(]|z|| ),z € B(r). We want to show there are
numbers pi, p» such that B(py) € S. € B(p2). p1 = ¥5 ' (c), p2 = U7 (c). € B(p1) <= ||z|]| <p =
V(z) Sga(lal ) <t2(p) =c = veSe.xeSe = vu(lz] ) SV(e)<ec = ' (0)=p = z€
B(p2)

6.6 Lyapunov Method

l’/l = I’Q,:Z:IQ = =1 — x%xz
(0,0) is a critical point. We want to linearize this system at (0,0). We might say 2} = x3,24 = —x;. The
eigenvalues are +i, so there is no conclusion about the stability of (0, 0) in nonlinear problem. Instead, we
have the Lyapunov approach. Let V(z) = 2% + 23 if ¢ is any solution of the system

d d
GV (0®) = 7 (61 + 03) = 20101 + 2626 = 20165 <0

V(¢(t)) is monotone decreasing and strictly positive unless ¢; = ¢2 = 0 and ;. V(4(t)) = V} exists,

Vo > 0. It also implies (0,0) is a stable equilibrium. In this example V is the Lyapunov function. The key

property is that ¢t — V(¢(t)) is monotone decreasing when ¢ is a solution of the given ODE system. Use

the following setup.

Let f(xo) = 0, u = u(wo) is an open set in RY containing zo. V : U — R, V € C(R). V(z¢) =0, V(x) > 0,

x # xo (positive definiteness condition). ¢ — V(¢4(t)) monotone decreasing if is a solution of 2’/ = f(z).

Then we say V is a Lyapunov function of the system 2’ = f(x).

Example : V(z) = 22 + 22 in the above example has all of these properties.

Example: Hamiltonian System. z — (p,q) ¢’ = %—’;’ p’ = for some function H(p, ¢). The Hamiltonian function
d O0H , OH , OHOH OHOH

@H(P(t)ﬂ(t)) = 87pp + aqu =" op 0q + g op

So H(p(t),q(t)) is constant on any solution. Suppose p, ¢ are both 1D, and then suppose H (p, q) = ap®+bg>.

Positive definiteness depends on «,b. Since H(p, ¢) is constant on a solution, it is a level curves of a hy-

perbola if ab < 0, or ellipse if ab > 0. In the latter case, either £H is PD and thus is the Lyapunov function,

but no such function exists in the former case. So H may or may not be a Lyapunov function depending on

details of H and equillibrium point (po, go)-
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6.6.0.2 Lie Derivative Assume the systemisz’' = f(x), f € CL. V: RN — Ris Cl alsoif x = ¢(t) is a
solution.

dtV(cﬁ( ) =V(e(t) - ¢'(t) = V(1) - f((t)) = W(e(2))

where W is continuous and is the derivative of V along a solution. W is called the Lie Derivative of V" along
the vector field f. Note that we don’t need to know any solution ¢(t) to compute . In the above example,
we have W (z) = —z?23 and W (z) = 0 respectively. Notice that W < 0 in these cases, so we say W is
negative semidefinite.

6.6.0.3 Lie Derivative and Stability Theorem: Assume V is a Lyapunov functions. If W is negative
sem-definite, then x is stable. If W is negative definite then x, is asymptotically stable.

Proof: WLOG let xy = 0. By previous lemma there exist » > 0 and 11, ¢» which are continuous on C [0, 7]
strictly increasing, ¥1(0) = 12(0) = 0 such that ¢ (||| ) < ¥a2(||z] ), |z]] < r. Picke € (0,7), ¢ = 1¥1(e),
§ =1y *(c) so B(d) C {x €B(r):V(z) < c} C B(e). Let the starting point of a solution ¢ € B(§) x = ¢(¢)
will be the solution of the system with ¢(0) = & Then W <0 = V(¢(t)) < V(¢(0)) = V(&) < cforall
t > 0. This implies ||¢(t)|| < eforall ¢ > 0 so 0 is stable.

Now suppose W is negative definite. Then there exist i3 € C' [0, r] strictly increasing st W (z) < —us(||z| ).
4y (g(t) = W(s(t) < 0if ¢(t) # 0. This implies

Grlel < V(e /% l6(s)] )d

by FTC and W < —3. If V(¢(¢)) does not converge to 0, then it is bounded below say by ¢,. We see
Dallo®) ) 2 V(6(t) 2 co = o)l = 3" (co) = po

this implies
0 <1(po) < V(& /1/13 po)ds = V() — ty3(p) — —o0,t — 00

Thus we have reached a contradiction, which implies V (¢(t)) — 0. ¢(t) — 0since [|¢(t)]| < ¥ (V(p(t)) —
0.

Example, ¥} = —z; — z9, 74 = 221 — x3. Choose V (z) = 22?7 + x3. The properties of V() can be checked
showing (0, 0) is asymptotically stable.

6.6.0.4 Stability via Lyapunov Functions Theorem: = = 0 a rest point of 2’ = f(z). Let V : B(0) —
(0, 00) be continuous, positive definite. W = V - f negative semi definite implies x = 0 is stable OR if it is
negative definite implies x = 0 is asymptotically stable.

6.7 Gradient Sytems
a2’ = F(z) where F(z) = — f(x) for some f : R" — R. Choose V(z) = f(z). Then

V-F=f F(x)=—|f(2)|,

Suppose x( is an isolated rest point of ' = F(z) = —f(z) and that f(z) has a strict local minimum at
xo. Then zq is asymptotically stable rest point of ' = F(z). Suppose z, is an isolated rest point of 2’ =
F(:c) = f(x) and that f(z) has a strict local minimum at z,. Then xz, is an asymptotically stable rest point of
a2’ = F(z). f(x) has a strict local minimum at xq implies f(x) — f(xo) > 0. Forz € {z : 0 < ||z — zo|| < 61}
xo an isolated rest point implies F'(z) # 0 in some neighborhood.
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6.8 ??

' = f(t,z), z(ty) = zo with solution ¢(¢, to, zo).

Let z = ¢(t) be a solution defined for ¢y < ¢ < co we say ¢ (t) is stable (Lyapunov) if ther eis a b > 0 such that
lzo — 2 (to)|| < bimplies ¢(t,to,x0) exists for all ¢ > ¢, and given e > 0 there is a 6 = d(e, ¥ (to), f) € (0,5)
such that ||zg — (o) — ¥(t)|| < eforall ¢ > ty. ¥(t) is asymptotic stable if in addition there is another
0 € (0,b) such that ||xg — ¥ (to)|| < ¢ implies ||o(t, to, z0) — ¥(t)|| — 0 ast — co. Suppose = = ¥(t) is a
solution for t > ty. Sety = = — ¢ (¢). Then

y'=a' = (t) = f(t,2) = f(t.0(t) = A(t)y + h(t,y)
where A(t) = fo(t, (1)), h(t,y) = f(t,y + &) — f(E,9(F) = fo(t, ¢ (t))y.

h(t,y1) — h(t,y2) = /0 (fe(t,y2 + s(yr —y2) +¥(t)) — fu(t,¥(t))) (y2 — y1)ds
So 0 < s < 1implies

(2 + s(y1 —2) +0(1) =@ = llsyr + (1 =)yl < sllpall + (1 = s)]v2ll

If |yl s lly2ll < 0, then |[(y2 + s(y1 — y2)¥(t)) — ¥(¢)|| < 4. So f,(t,y) is uniformly continous as long as we
restrict ¢ to lie in [to,to + T for some T > 0 (and assume ||y2|| , ||y1|| < p). This implies for all e > 0, § > 0,
such that [|h(t,y1) — h(t,y2)|| < e provided t € [to,to + 1] and y1,y2 € B5

Now suppose ¢ (t) is a T—periodic solution of ' = f(t,z) where f(t + T,x). y =
Aty + h(t.y). At) = fo(t. (1) S0 A(t +T) = folt + (1) = fult, (t )) S,

ht+Ty) = f(t+T,y) = fE+ Tt +T)) = fult + T,p(t +T))y = h(t, y)

)
Theorem: If the Floquet Multipliers of 2’ = A(t)x all lie in {z €: |z| < 1}, then ¢ (¢) is asymptotically stable.
Idea of Proof: Let ®(t) = P(t)e!” be the fundamental matrix with ®(0) = I. We have P(0) = I and
P(t+T) = P(t), t € R. If X is a Floquet multiplier then A = ¢”?, where p is an eigenvalue of R.
Al <1 <= Re(p) <0.

— 4(t) implies ¢y =

P(0) (yof) = P y(0) + PO [ e TP (s, y(s))ds>

gives us for w(t) = P~1(t)y(t),
w(t) = eFw(0) + / =R P=1(s)h(s, P(s)w(s))ds
0

which implies
w' = Rw + g(t,w), g(t,w) = P h(t, P(t)w(t))

and we note that w = 0 <= y = 0. Note

lg(t,wi) = g(two)|| < [[PTHO| IP()wr = P(H)wall e < e [PTHO|| NP E) | ollwr — w2l < eflwr —wall

Given that we can choose e; < ¢(||P~(t)||_IIP(t)]l o)~

Now we use a slightly modified proof of asymptotic stability for w = 0 solution of w’ = Rw + ¢g(¢, w) to show
y = 0 is asymptotic stable solution of 4/ = A(t)y + h(t,y) and 1 (t) is an asym. stable solution of 2’ = f(¢, z).
Note. Suppose = = ¥ (t) is a T—periodic solution of ' = f(z). It turns out that the linear variation system
in this case always has a Floquet multiplier A = 1. This is seen as follows.

V() = f(®) = ¢"(t) = L)' (1) = @)(1) = A1) (1)
which implies ' (t) is a solution of y' = A(t)y. So ¢/(t) = ®(¢)¢’(0) implies ¢/ (T) = &(T)y’'(0). Y(t +T) =
W(t) implies /(1) = /(0) implies ()¢ (0) = A/ (0) = (1)4(0)
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6.9 Invariant Sets
' = f(z) fecH(),2ecRY, open

Definition: A set of points £ € ) is said to be a positively /negatively (respectively) invariant if for each
xo € FE the solution ¢(t,z¢) of the above equation through satisfies ¢(t,z9) € E foral¢ > 0, ¢ < 0
(respectively). Sets are invariant if they are both positvely and negatively invariant. Examples:

o If f(x0) =0then {x} is an invariant set

o If ¢(t,z0) is T— periodic thne the solution will be the orbit
(o) ={o(t,x0) : 0 <t < T}

e Consider 2/ = f(z) = —z(1 — 2?). {(-.5,.5)} is positively invariant, {(.5,1.5)} is negatively invariant.
{(-1,1)} is invariant. [(—1,1)] is invariant.

e If V € C'(Q) is a Lyapunov function for the above equation, f(0) = 0, and V(z) - f(z) <0, z € B; for
some § > 0then S, = {z € Bs : V(x) < C} is positively invariant for ¢ > 0.

Definition. Suppose ¢(t, x¢) is a solution that exists for all t > 0. The positive limit set, denoted by w(z), of
xo (Or ¢(t, x0)) is the set of all points y € 2 for which there is a sequence of times {¢,,} satisfying (1) ¢, — oo
asn — oo and (2) ¢(t,, o) — y as n — oco. The a-limit setis a(zg) = Nr<o {d(t, z0) 1 t < T}

Lemma: If the oslution ¢(¢,z¢) exusts for all ¢ > 0 and the orbit *(z9) = {¢(t,z0) : t > 0} remains in
a compact set K C , then w(zo) is a nonempty compact subset of Q2 that is invaraint. Furthermore
dist(¢(t, zg),w(wp)) — 0 as ¢ — oo (although not uniquely).

Proof. w(x) is nonempty: Let {t,} C [0,00) be a sequence with ¢, — co. Then {¢(¢,,x0)} is a sequence
contained in K. Hence there is a subsequence {¢(t,,,xo)} C K and a pointy € K such that ¢(t,,,z0) = v
as h — oo. This implies y € w(zg) # 0.

w(zg) is closed: Suppose {z,} C w(zo) and z,, — y as n — oo. For each n there is a t,, > n such that

1
tna - 4n < =
[6(tns w0) = ] < —

which implies
1
16(tn, z0) =yl < [6(tn, z0) = 2nll +llzn =yl < —+llzn —yl

So ¢(tn,xg) = yasn — oo s0y € Q(wg). This means omega limit set is compact since is a closed subset
of a compact set K.

w(xp) is invariant: Let y € w(zo) and choose {t,} so that z, = ¢(t,,z9) — y as n — oco. By continuous
dependence we know ¢(¢,z,) — &(t,y) as n — oo, for each t € (a(y), 8(y)) where (a(y), 8(y)) is the
maximal interval of existence of ¢(t,y). But then ¢(t + t,, x0) = ¢(t, ¢(tn, x0)) = ¢(t,2,) — o(t,y) asn —
oo. This implies ¢(t,y) € w(xg) forall t € (aly), B(y)). w(zo) C K = (a(y), B(y)) = (—00,0). ¢(t,x9) —
w(zg) as t — co. We need to show that for any € > 0 there is a T' > 0 such that dist(¢(t, zo), w(wo)) < e.
Suppose this is not true. Then for some ¢ > 0 there is a sequence {t,,} such that dist(¢(t,, zo), w(we)) > €.
But {¢(tn, o)} K implies there is a subsequence {é(t,,z¢)} and a point y € K¢(t,,,x0) = y as k — oc.
So t € w(xg). Therefore there are times t,, such that dist(¢(t, 20), w(wp)) < €.

6.9.0.5 Lemma

x' = f(x) z(0) = zo
o(t, o) exists for all t > 0. *(zg) = {z = ¢(t,x0) : t > 0} C K, compact which implies w(z) non-empty,
compact, invariant and ¢(t,zo) — w(zp) as t — oo. Also w(zg) is also connected. le w(z() cannot be

decomposed into 2 disjoint closed sets.
Proof: If not e have w(zg) = U UV where U,V are closed (therefore compact) and U NV = §. Let
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d = dist(U, V). Since U,V are compact and disjoint, d > 0. But then there are sequences of times {t2,}
and {tz,+1} such that t,,1 > t, for all n and dist(¢(t2,),U) < id, dist(¢(t2n41),V) < id. Since the
distance function is continuous, the function f(t) = dist(¢(t, o), U) is continuous. We have f(ts,) < 4
and f(tzn+1) > % So by IVT, there is a time ,,, 2, <, < t2n41 such that dist(¢(f,, ), U) > +d and
dist(¢(tn,20), V) > 1d. Hence i — oo and ¢(,, z0) — w(xo) and w(zg) ¢ U U V: a contradiction.

6.9.0.6 Lemma
z' = f(x) fec(9)

Let V c CY(2) and W (x) = V(x) - f(z) < 0,2 € . Suppose z, € Q and ¢(t, zo) exists for all t > Owith
*(xz0) C K,a compact set, so that w(zg) is non-empty. Then W(z) = 0,z € w(zo).

Proof: We have £V (¢(t,z0)) = (¢(t,20)) - f(¢(t,20)) < 0 which implies t — (¢(t,z0)) is a non-increasing
function. Also V (¢(t, xo)) is bounded below since ¢(t,zy) € K, t > 0. Then flifﬁlc V(é(t,z0)) = Voo, Which is

some number. Now suppose y1,y2 € w(xg). There are sequences {t,},{s,} such that ¢(¢,,z¢) — y1 and
&(8n,x0) = y2 Where t,,, s,, — oo. Then the continuity of V' implies
lim V((b(tnaxO)) = V(y1> = Voo = V(yQ) = lim V(¢(Sn,$0))

n—oo n—oo

Therefore V' (z) is constant on w(xzq) which implies W(x) = 0, x € w(xo).

6.9.0.7 Theorem

a'=f(x)  f(0)=0
Suppose V € C(B,) is positive definite, W(z) = V- f(z) < 0,z € B, and S, = {r € B, : V(x) < ¢}
is contained in a compact subset of B, for some ¢ > 0. If the only invariant subset of the set =
{z € B, : W(x) =0} is {0}, then z = 0 is asymptotically stable.
Proof: Choose zy € S.. Since V(¢(t,x0)) < ¢, t > 0. We have *(z() remains in a compact set. Hence
w(zg) is nonempty and invariant. Also w(z) € z, but then w(zg) = {0} for any zyS..

6.9.0.8 Example Consider
'=(A-By)x y =(Cz—-D)y

The rest pointsarez = 0ory = 4. y=00rx = %. The invariant sets are L; = {(z,y) : « = 0,y > 0},
Ly = {(z,y) :2 >0,y =0}, Q@ = {(z,y) : « > 0,y > 0}. We can remove the dimensions in space by the

transformation i%, g% = y. We can scale time by using 7 = At and let a = % So our new equations are

T

/

F=(1-yz §=alz—1)y
Set f(z) = x — In(x) — 1. Consider V(z,y) = af(x) + f(y). This is constant along solutions since its an
integral curve of the separable equation. So by construction, V(1,1) =0, V(z,y) > 0.

6.9.0.9 Example Consider
' =(1—y-A)z=al@yr y=az-1-pyy=7py)y
Where a, A, . > 0. There are four rest points. The one in the first quadrant excluding the axes is

1+p 1-X
1+ 1+ A

(z0,y0) = <

To create a Lyapunov function for this critical point, we consider a perturbed version of the function in the
previous problem.
X
Vi(z,y) =mnf <y) +Yeaf ()
Yo Zo
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We seek to determine v, 2. We see

oA R - T — 2o vV oy Y — Yo
7:70/‘]0 JE— :’}/QG 7:—af —_— :’Yli
or  xo Lo 9y Yo Yo YYo

For convenience write
04(%9) = a(x,y)—a(:ro,yo) = —(y—yo)—A(x—xo) 5(%,@) = 5(%?4)—5(550790) = a((x—xo)—,u(y—yg))

So then

<8V ov

O e o) = a (22 (e = a0)y = )+ N = a0)?) + 2 (g = o) = 20) — iy = 0)

) Yo
So if we choose 2 = xg, 71 = ¥o,

<8V ov

s )+ (wae) e ) = ~a (N = 20+l = o))

Vie,y) = yof (y> + azof (x)
Yo Zo

We see that V(zo,y0) = 0, V(z,y) > 0for (z,y) # (z0,%0), and V - (xa(z,y), yB(x,y)) is negative definite
so we conclude that (¢, yo) is an asymptotically stable rest point.

So then
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