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Part I

Ordinary Differential Equation Theory

1 Introductory Theory

An nth order ODE for y = y(t) has the form

F (t, y′, y′′, .., y(n)) = 0 (Implicit Form)

Usually it can be written
y(n) = f(t, y′, y′′, .., y(n−1)) (Explicit Form)

A solution y is defined on y : I → R with y ∈ Cn(I) for some I ⊆ R such that

y(n)(t) = f(t, y′(t), y′′(t), .., y(n−1)(t)) ∀ t ∈ I

• n is the order of the ODE. It is the highest derivative to appear in the equation.

• The ODE is linear if F depends linearly on y, ..., y(n)

y(n) = g(t) +

n−1∑
i=0

αi(t)y
(i)(t)

and is said to be homogenous if g(t) ≡ 0.

• The ODE is nonlinear if F depends nonlinearly on y(n)

• If the solution is defined on whole of R then we call it a global solution

• If the solution is defined on a subinterval of R then we call it a local solution

1.1 Senses of Solutions

1.1.0.1 Classical Solution
u′ = f in a classical sense if u ∈ C1 and u′(x) = f(x) ∀ x

1.1.0.2 Weak Solution
u′ = f in a weak sense if u ∈ L1

loc and u′ = f in D′ sense.
Classical solutons are always also weak solutions

1.1.0.3 Distributional Solution
u′ = f in a distributional sense if u ∈ D′ and u′ = f in D′ sense.
Classical solutions and weak solutions are always also distributional solutions

1.1.0.4 Regularity of Solutions For u′ = 0 all solutions are classical, weak, and distributional solutions.
For xu′ = 0 the solution u = δ is neither classical nor weak.
Thus, the regularity of the solution depends on the DE.
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1.1.1 Initial Value Problems (IVP)

A problem is an IVP if it is given in the form

y(n) = f(t, y′, y′′, .., y(n−1))
y(a) = γ0

y′(a) = γ1

...
y(n−1) = γn−1

where a is the lower boundary of the domain.

• Linear IVPs have a unique solution.

• Existence of Solution

– Local Existence Theorem or Peano Existence Theorem: If f is continuous on Rn, then every
(t0, u0, ..., u

(n−1)
0 ) there exists an open interval (t0 − ε, t0 + ε) = I ⊂ R with ε > 0 that contains t0

and there exists a continuously dfferentiable function u : I → R that satisfies the IVP.
– Local Existence Theorem If f is continuous in a neighborhood of (a, γ0, ..., γn−1) there exists

an open interval (t0− ε, t0 + ε) = I ⊂ R with ε > 0 that contains t0 and there exists a continuously
dfferentiable function u : I → R that satisfies the IVP.

• Uniqueness of Solution

– Uniqueness by Continuous Differentiability of f : If ∇f is continuous (if f is continuously
differentiable), then the solution is unique.

– Uniqueness by Lipschitz: If f(u, t) is Lipschitz continuous in u then the solution is unique.

• Gronwall’s Inequality: For u(t) continous and φ(t) ≥ 0 continuous defined on 0 ≤ t ≤ T and u0 is a
constant, if u(t) satisfies

u(t) ≤ u0 +

ˆ t

0

φ(s)u(s)ds for t ∈ [0, T ]

then, u(t) ≤ u0exp

(ˆ t

0

φ(s)ds

)
for t ∈ [0, T ]

A generalization allows u0 = µ(t) to depend on time. Then

u(t) ≤ µ(t) +

ˆ t

t0

v(s)u(s)ds =⇒ u(t) ≤ µ(t) +

ˆ t

t0

µ(s)v(s)e
´ t
s
v(z)dzds

Also, if we consider going backward in time, (again u0 constant)

u(t) ≤ u0 +

ˆ t0

t

v(s)u(s)ds, t ≤ t0 =⇒ u(t) ≤ u0e
´ t0
t v(s)ds

1.1.2 Boundary Value Problems (BVP)

• A BVP with separated conditions affect multiple endpoints such as in the form

ga(y(a)) = 0, gb(y(b)) = 0

• A BVP with unseparated conditons affect the endpoints simultaneously, such as in the periodic
conditions

y(a)− y(b) = 0
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1.1.3 Systems of ODEs

One could also consider solutions to systems of ODEs.
Any ODE can be converted into a first order system of ODEs. Example:

x′′′ = t+ cos(x′′)ex becomes y′ =

 x′

x′′

x′′′

 =

 y2

y3

t+ cos y3e
y2


1.2 Linear Equations

Linear equations are linear in y, and have the form

n∑
j=0

aj(t)D
(j)y(t) = g(t)

Ly = g(t)

Otherwise the ODE is nonlinear for some a0, a1, ..., an, g andDk =
dk

(dt)k
. Note that aj(t) need not be linear.

1.2.1 General solutions

For (a1, a2, ..., an continuous; g continuous; an 6= 0), linear ODEs have infinitely many solutions of the form

y(t) = yp(t) +

n∑
j=1

cjyj(t)

Where (y1, y2, ..., yn) are linearly independent solutions to Ly = 0 and yp(t) is a particular solution to Ly = g.

• Linear IVPs have a unique solution.

1.2.1.1 Linear Systems of ODEs Any system of linear ODEs can be viewed as the matrix equation

~y′ = A~y

with solution
~y = eAt~c where x(t) = y1(t)

For a vector of arbitrary constants c determined by intial or boundary values.

• If A is diagonalizable , A = V DV −1 with its eigenvectors V , then eAtc = V eDtV −1~c. Since V =

(~v1 . . . ~vn) and we can define arbitrary constants ~d = V −1~c, this becomes

~y(t) = eAtc = d1e
λ1t~v1 + d2e

λ2t~v2 + ...+ dne
λnt~vn

Alternatively you can simply evaluate V eDtV −1~c and take the first component.
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1.2.2 Integraton Methods

1.2.2.1 Integrating Factor
Given

y′(x) + p(x)y(x) = q(x)

Multiplying by
y′(x)e

´
pdx + p(x)e

´
pdxy(x) = q(x)e

´
pdx

Integrating both sides is used with reverse product rule

y(x)e
´
pdx =

ˆ
q(x)e

´
pdxdx+ c1

1.2.2.2 Variation of Parameters
Given

y′′ + q(t)y′ + r(t)y = g(t)

We find the solutions to the associated homogenous equation (y′′ + q(t)y′ + r(t)y = 0)

yc = (t) = c1y1(t) + c2y2(t)

And we want to find a particular solution to y′′ + q(t)y′ + r(t)y = g(t) in the form

yp = (t) = u1(t)y1(t) + u2(t)y2(t)

We let
u′1(t)y1(t) + u′2(t)y2(t) = 0 Condition 1

and so
y′p = (t) = u′1(t)y1(t) + u1(t)y′1(t) + u′2(t)y2(t) + u2(t)y′2(t)

y′p = u1(t)y′1(t) + u2(t)y′2(t)

Differentiating
y′′p = (t) = u′1(t)y′1(t) + u1(t)y′′1 (t) + u′2(t)y′2(t) + u2(t)y′′2 (t)

Plugging this into the original equation and cancelling gives

u′1y
′
1 + u′2y

′
2 = g(t) Condition 2

Solving the system given by the two conditions gives

u′1 = − y2g(t)

y1y′2 − y2y′1
u′2 =

y1g(t)

y1y′2 − y2y′1

so
u1 = −

ˆ
y2g(t)

y1y′2 − y2y′1
dt u2 =

ˆ
y1g(t)

y1y′2 − y2y′1
dt

And so our particular solution is

yp(t) = −y1(t)

ˆ
y2g(x)

y1y′2 − y2y′1
dx+ y2(t)

ˆ
y1g(x)

y1y′2 − y2y′1
dx

So our general solution is
y = yc(t) + yp(t)
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1.2.2.3 Substitution The Bernoulli equation

y′(t) + p(x)y = q(x)yn

Can be solved with the substitution u = y1−n

u = (1− p)(p(x)u+ q(x))

Which can then be solved with other methods.

1.2.3 Exactly Solvable Cases

First Order Linear Equations

y′ + p(t)y = q(t)

The general solution is

y =
1

M(t)

ˆ t

t0

q(u)M(u)du+
C

M(t)

for M(t) = e
´ t
s0
p(s)ds and any constant C.

Linear Equations with Constant Coefficients

Ly =

n∑
j=0

ajD
jy = 0

Solutions exist in the form
y(t) = eλt

where λ is a root of the characteristic polynomial

p(λ) =

n∑
j=0

ajλ
j

If roots are repeated, the solutions associated with the same root must take on forms that are orthogonal to
one another, such as

y(t)1 = eλt , y(t)2 = teλt , y(t)3 = t2eλt

The pair of solutions associated with a pair of complex roots must be real, and so for a pair of roots
(λ± (α+ iβ))

y1(t) = eαtcos(βt) y2(t) = eαtsin(βt)

Euler Type Equations

Ly =

n∑
j=0

aj(t− t0)jDjy = 0

Solutions exist in the form
y(t) = (t− t0)λ t 6= t0

Where λ can be found by using this solution form in the equation, which forms the indicial equation
n∑
j=0

Ajt
j = 0

Where An = an but the other coefficients depend on the nature of the ODE. If the indicial equation has...
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• two roots, then
y(t) = c1(t− t0)λ1 + c2(t− t0)λ2

• one root, then one must perform reduction of order. However, solutions typically have a solution that
looks something like

y(t) = c1(t− t0)λ + c2(t− t0)λ ln |t− t0|

For higher algebraic muliplicities of the root, you will have additional solutions
{

(t− t0)λ(ln |t− t0|)2, ..., (t− t0)λ(ln |t− t0|)m−1
}

• a complex pair of roots r = λ ± iω, one must solve for the real solutions. Typically you end up with a
solution that looks something like

y(t) = c1(t− t0)λ cos(ω ln |t− t0|) + c2(t− t0)λ sin(ω ln |t− t0|)

For higher algebraic multiplicities you can solve for real valued solutions of the form

(t− t0)λ cos(ω ln |t− t0|) ln |t− t0| ,(t− t0)λ sin(ω ln |t− t0|) ln |t− t0| , ...
..., (t− t0)λ cos(ω ln |t− t0|)(ln |t− t0|)m−1,(t− t0)λ sin(ω ln |t− t0|)(ln |t− t0|)m−1

1.2.3.1 Example
ax2y′′ + bxy′ + cy = 0

Yields the indicial equation
aλ2 + (b− a)λ+ c = 0

Say a = 1, b = −6, c = 10. Then λ1,2 = 2, 5 and

y(t) = c1x
2 + c2x

5

Say a = 1, b = −9, c = 25. Then λ = 5 and we must additionally solve

y(x) = x5u(x) v = u′

which has the solution
y(x) = x5(c1 ln |x|+ c2)

Say a = 1, b = −3, c = 20. Then λ = 2± 4i

y(x) = c1x
2 cos(4 ln |x|) + c2x

2 sin(4 ln |x|)

1.2.4 Relation between Euler Equations and Constant Coefficient Equations

Let y : (t0,∞)→ R for and Y : (−∞,∞)→ R be functions of t and x respectively. Assume they are related
by a substitution x = et. That is, y(t) = Y (x). Then the Euler equation for y can be related to the constant
coefficient equation for Y .

1.3 Nonlinear Equations

Nonlinear equations such as
y′ = y2 with u(t0) = u0

May have a unique solution, but usually only local solution.
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1.4 Nonlinear ODEs

Nonlinear ODEs hav the form
F (t, y, y′, ..., y(n)) = 0

where F depends nonlinearly on y(n). It may have an explicit form of

y(n) = f(t, y′, y′′, .., y(n−1))

y(a) = γ0

...
y(n−1)(a) = γn−1

2 Solutions

2.1 General Solutions

General Solutions are the set of all solutions to a DE. Generally, a nth order D’s general solution has n
arbitrary constants.

Normalized Solutions: The solution set (for example y(x) = c1y1(x) + c2y2(x) to a DE such that when
y(x = 0) = 0 and y′(x = 0) = 1.

2.1.1 Well-Posed Problems

A problem is well posed if

• There is one solution (existence)

• The solution is unique (uniqueness)

• The solution depends continuously on the data (stability condition)
Small changes in the intial or boundary conditions lead to small changes in the solution

Wronksian: The determinant of the Fundamental Matrix of a set of solutions to a differential equation.
A set of solutions to a DE are linearly independent if the Wronskian identically vanishes for all x ∈ I. Note
that W ≡ 0 does not imply linear dependence.

For f, g, W (f, g) = fg′ − gf ′. For n real or complex valued functions f1, f2, ..., fn which are n− 1 times
differentiable on an interval I, the Wronksian W (f1, ..., fn) as a function on I is defined by

W (f1, ..., fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) . . . fn(x)
f ′1(x) . . . f ′n(x)

...
. . .

...
f

(n−1)
1 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣x ∈ I

3 Advanced Theory

3.1 First Order Equations

Consider
~x′ = f(~x)
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3.1.1 Intervals of existence

Let F (x) =
´ x
x0

dy
f(y) . If x = φ(t) is a solution to the ODE, then F (φ(t)) = t so F (φ(0)) = 0. By the inverse

mapping theorem,

F (x) = t+ t0 =⇒ x = F−1(t+ t0) =⇒ x = F−1(t+ F (x0))

Consider two cases

• If f(x0) = 0 then
φ(t) = x0 ∀ t, u(t) = f(x0) = f(φ(t))

• If f(x0) 6= 0 then f ∈ C(R) =⇒ f 6= 0 in some neighborhood about x0. Assuming f(x) > 0 on
(a, b), then F ′(x) = 1

f(x) > 0 , a < x < b implies F (x) is monotone increasing so F−1(x) exists and
φ(t) = F−1(t) is a solution.

4 New Notes

Basic Existence and Uniqueness
Let U ∈ Rn+1 be open, f ∈ C(u), and (t0, x0) ∈ U . If f satisfies a Lipschitz condition in x uniformly in t on

some closed spacetime cylinder S that is contained in U , then there is an interval [t0, t0 + T0] ⊂ [t0, t0 + T ]
and a unique solution of x′ = f(x, t), x(t0) = x0. Picard iteration converges uniformly to some ϕ(t) that
satisfies the IE

ϕ(t) = lim
k→∞

ϕk+1(t) = lim
k→∞

(
x0 +

ˆ t

t0

f(s, φk(s))ds

)
= x0 +t

t0 f(s, ϕ(s))ds

Suppose φ(t), ψ(t) satisfy

φ(t) = x0 +

ˆ t

t0

f(s, φ(s))ds, ψ(t) = x1 +

ˆ t

t0

f(s, ψ(s))ds

for t ∈ [t0, t1], then

‖φ(t)− ψ(t)‖C ≤ ‖x0 − x1‖ +

ˆ t

t0

L‖φ(s)− ψ(s)‖ ds

Satisfies Gronwall’s inequality with u(t) = ‖φ(t)− ψ(t)‖C , u0 = ‖x0 − x1‖ , and v(s) = 1. Thus

‖φ(t)− ψ(t)‖C ≤ ‖x0 − x1‖ eL(t−t0) =⇒ max
t0≤t≤t1

‖φ(t)− ψ(t)‖C ≤ ‖x0 − x1‖ eL(t1−t0)

So x1 = x0 =⇒ φ(t) = ψ(t), and the solution depends continuously on the initial data.
Let φ(t) be the solution of x′ = f(t, x), x(t0) = x0 and let ψ(t) be the solution of x′ = f(t, x), x(t1) = x1

Suppose both solutions exist of a common interval (a, b) with t0, t1 ∈ (a, b). We know

φ(t) = x0 +

ˆ t

t0

f(s, φ(s))ds, ψ(t) = x1 +

ˆ t

t1

f(s, φ(s))ds, a < t < b

Without loss of generality, assume t0 < t1. So

φ(t)− ψ(t) = x0 − x1 +

ˆ t

t0

f(s, φ(s)ds−
ˆ t

t1

f(s, ψ(s))ds

= x0 − x1 +

ˆ t1

t0

f(s, φ(s)ds+

ˆ t

t1

f(s, φ(s))− f(s, ψ(s))ds

‖φ(t)− ψ(t)‖C = ‖x0 − x1‖ + |t1 − t0| ‖f(s, φ(s)‖C + L(t− t1)‖f(s, φ(s))− f(s, ψ(s))‖C
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So letting µ = ‖x0 − x1‖ + |t1 − t0| ‖f(s, φ(s)‖C , and V (s) = L(t− t1) , we use Gronwall’s to obtain

‖φ(t)− ψ(t)‖C ≤ (‖x0 − x1‖ + |t1 − t0| ‖f(s, φ(s)‖C) eL(t−t0), t > t1

So x = φ(t) = φ(t, t0, x0). That is, φ is a continuous function of the problem parameters as well as t.
Differentiation on Rn Given F : RN → RN , we say F (x) is differentiable at ~x0 if there exists a linear map

(matrix) A such that

lim
h→0

‖F (x0 + h) + F (x0)−Ah‖
‖h‖

= 0

We denote DF (x0) = A = ∂Fi

∂xj
(~x0) if F = (F1, ..., FN )T .

F is differentiable at RN If F is differentiable for all ~x0 ∈ RN then DF (~x) is a matrix valued function.
F ∈ C1(RN ) if x→ DF (~x) is continuous with respect to some norm ???
f ∈ C(U) =⇒ Dxf ∈ C(U,RN×N ) f is locally Lipschitz continuous in x with respect to t. That is, given

a compact subset U0 ⊂ U , there is a constant L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ LU0
‖x− y‖ , ∀ (t, x), (t, y) ∈ U0

We assume U0 = [α, β]×K where K is compact and convex. Let x, y ∈ K and s ∈ (0, 1) and define

F (s) = f(t, x+ s(y − x)), 0 ≤ s ≤ 1

By the Chain Rule,

F ′(s) =
d

ds
f(t, x+ s(y − x)) = [fx(t, x+ s(y − x))]N×N · [(y − x)] +N×1

Now consider F (0) = f(t, x) , F (1) = f(t, y). So

F (1)− F (0) =

ˆ 1

0

F ′(s)ds ⇐⇒ f(t, y)− f(t, x) =

ˆ 1

0

[fx(t, x+ s(y − x))]N×N · [(y − x)] +N×1 ds

so let L = ‖‖fx(t, x+ s(y − x))‖ ‖C

‖f(t, y)− f(t, x)‖C ≤
ˆ 1

0

L‖y − x‖ ds ≤ L‖y − x‖

Example: y′ = y2 = f(y)
f(x)− f(y) = f ′(s)(x− y), y ≤ s ≤ x

We see f ′(y) = 2y, so these intervals all have different constants.

4.1 The First Variational Equation

Consider IVP1 x′ = f(t, x) x(t0) = x0. If f ∈ C1(U) then x = φ(t, τ, ξ) is differentiable in all three variables.

∂

∂t

∂

∂τ
φ = fx(t, φ) · ∂

∂τ
φ =⇒ y(t) =

∂

∂τ
φ(t, τ, ξ) solves

dy

dt
= A(t)y

We call dydt = A(t)y the First Variational Equation, where A(t) = fx(t, x, τ, ξ).
Performing the same thing for ∂

∂ξ

dX

dt
= A(t)X

So φ(t, τ, ξ) satisfies

φ(τ, τ, ξ) = ξ =⇒ ∂

∂ξ
φ(τ, τ, ξ) = I
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Also,

φ(τ, τ, ξ) = ξ =⇒ ∂

∂t
φ+

∂

∂τ
= 0 =⇒ ∂

∂τ
φ = −f(τ, ξ)

φ(t, τ, ξ) has partial derivatives determined by

∂

∂τ
φ :

{
y′ = A(t)y

y(τ) = −f(τ, ξ)

∂

∂ξ
φ :

{
X ′ = A(t)X

X(0) = I

We want to show

lim
h→0

‖Q(t, τ, ξ, h)‖
‖h‖

= 0, Q(t, τ, ξ, h) = φ(t, τ, ξ + h)− ϕ(t, τ, ξ)−X(t)h

Let (τ, ξ) ∈ B(t0, x0; a1, b1) and choose h sufficiently small h ∈ Rn so that (τ, ξ + h) ⊂ R1 = B(t0, x0; a, b).
We use

φ(t) = φ(t, τ, ξ) φh(t) = φ(t, τ, ξ + h) A(t) = fx(t, φ(t, τ, ξ))

These are all defined on [τ − T, τ + T ] with (t, φ(t)) ∈ R2 and (t, φh(t)) ∈ R2 for t ∈ [τ − T, τ + T ] . Using
L = ‖‖fx(t, x)‖1‖C and ‖A(t)‖ ≤ L. t ∈ [τ − T, τ + T ].

‖φ(t)− φh(t)‖ ≤ ‖h‖ e2LT

φ(t) = ξ +

ˆ t

τ

f(s, φ(s))ds

φh(t) = ξ + h+

ˆ t

τ

f(s, φh(s))ds

X(t) = I +

ˆ t

τ

A(s)X(s)ds

So

Q(t, τ, ξ, h) =

ˆ t

τ

(f(s, φh(s))− f(s, φ(s))−A(s)X(s)h) ds

Using f(t, x)− f(t, y) =
´ 1

0
fx(t, x+ σ(y − x)) · (y − x)dσ,

‖f(t, x)− f(t, y)− fx(t, x) · (y − x)‖ ≤
ˆ 1

0

‖fx(t, x+ σ(y − x)))− fx(t, x)‖ ‖y − x‖ dσ

Since fx(t, x) is continuous on the compact set R2, it is uniformly continuous on R2. It follows that fx(t, x)
is uniformly continuous on R2.

We seek to use Gronwall’s inequality. We see that

Q(t, τ, ξ, h) =

ˆ t

τ

(f(s, φh(s))− f(s, φ(s))−A(s)(φh(s)− φ(s))) ds+

ˆ t

τ

A(s)Q(t, τ, ξ, h)ds

Continuity of f allows us to pick ε1 < ε
Te3LT so that

‖Q‖ ≤
ˆ t

τ

ε1‖φh − φ‖ ds+

ˆ t

τ

L‖Q‖ ds ≤ ε1T‖h‖ e2LT +

ˆ t

τ

L‖Q‖ ds

Using Gronwall’s inequality, we get

‖Q‖ ≤ ε1T‖h‖ e2LT eTL < ε
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4.1.0.1 Differentiability With Respect to a Parameter Consider{
x′ = f(t, x, λ) x ∈ RN

x(τ) = ξ

f : U × Λ→ RN , U ⊂ RN+1,Λ ⊂ RP , (τ, ξ) ∈ U

Let f ∈ C1(U × Λ) . Solutions of IVP are functions ~x = φ(t, τ, ξ, λ).
So let ~y′ = 0, ~y(τ) = λ, and we recast our problem as

~z =

(
~x
~y

)
(n+p)×1

, ~z′ =

(
~x′

~y′

)
=

(
f(t, z)

0

)
= F (t, z), ~z(τ) =

(
~τ
~λ

)
= γ =⇒ z = ψ(t, τ, γ)

So if we have

a(t) =

(
∂
∂xf(t, ψ(t, τ, γ)) ∂

∂λf(t, ψ(t, τ, γ))
0p×n 0p×p

)
Then our matrix DE is

Z ′ = a(t)Z,Z(0) = I =⇒ Z =
∂

∂γ
ψ =

(
∂
∂ξx

∂
∂λx

∂
∂ξy

∂
∂λy

)
=

(
xξ xλ
0 Ip

)
That is, (

xξ xλ
0 Ip

)′
=

(
fx fλ
0 0

)(
xξ xλ
0 Ip

)
⇐⇒ x′ξ = fxxξ, x

′
λ = fxxλ + fλ

With initial conditions xξ(τ) = I, xλ(τ) = 0.

4.2 Continuation of Solutions

Theorem. If f ∈ C1(U) and x = φ(t) is a solution of our above IVP, defined on an open interval (a, b)
containing t0. If

{(t, φ(t)) : a < t < b} ⊂ K ⊂ U

for some compactK then φ(a+) = lim
t→a+

φ(t) and φ(b−) both exist as finite values with (a, φ(a+)), (b, φ(b−)) ∈
U . Hence φ(t) extends as a continuous function to [a, b] which can be further extended as a solution of
x′ = f(t, x) to a larger interval.
Proof. Let M = max |f(t, x)| : (t, x) ∈ K. We know

φ(t2)− φ(t1) =

ˆ t2

t1

f(s, φ(s))ds, a < t1 < t2 < b

so ‖φ(t2)− φ(t1)‖C ≤ M |t2 − t1|. Thus φ(t) is uniformly continuous thus tn → b produces a Cauchy
sequence φ(tn) which converges by completeness to φ̂(b)
If sn us another sequence such that sn → b,∥∥∥φ̂(b)− φ(sn)

∥∥∥
C
≤
∥∥∥φ̂(b)− φ(tn)

∥∥∥
C

+ ‖φ(tn)− φ(sn)‖C → 0

Thus the limit is unique.
Corollary. If x = φ(t) is a solution on (a, b) and φ(t) cannot be extended beyond b as a solution, then (t, φ(t))
must leave every compact subset of U as t→ b+. Analogous statements holds at the left endpoint a.

11
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4.2.1 Extension of Solutions

Suppose Ω = (a, b)×RN , f ∈ C(Ω),−∞ ≤ a < b ≤ ∞ and satisfies a Lipschitz condition in x, uniformly in t

‖f(x, t)− f(t, y)‖ ≤ L‖x− y‖ , ∀ (t, x), (t, y) ∈ Ω

Then solutions of x′ = f(t, x) exist on the entire interval (a, b). Notice that for all t ∈ [a, b] ⊂ (a, b) and
x ∈ RN ,

‖f(t, x)‖ = ‖f(t, 0)‖ + ‖f(t, x)− f(t, 0)‖ ≤ max
t∈[a,b]

‖f(t, 0)‖ + L‖x‖ = Mα,β + L‖x‖

So for any τ, t such that α ≤ τ ≤ t ≤ β implies

‖φ(t)‖ ≤ ‖φ(τ)‖ +

ˆ t

τ

‖f(s, φ(s))‖ ds ≤ ‖φ(τ)‖ +Mα,β(β − α) +

ˆ t

τ

L‖φ(s)‖ ds

Thus ‖φ(t)‖ is bounded on [α, β] for any compact subinterval of (a, b). That is (t, φ(t)) cannot leave every
compact subset of Ω on any interval of the form [α, β] ⊂ (a, b) so the solutions extend to (a, b)

4.3 Existence

x′ = f(t, x), f ∈ C(Ω) x(τ) = ξ

Consider the space-time cylinder R = B(τ, ξ : a, b) ⊂ Ω. Let M = max
(t,x)∈R

‖f(t, x)‖ . α = min
{
a, bM

}
.

Choose a partition {tj}Nj=0 of [τ, τ + α].

τ = t0 < t1 < ... < tN−1 < tN = τ + α

Define an approximate solution φ(t) by

φ(t(j+1)) = φ(tj)f (tj , φ(tj))(tj+1 − tj), j = 0, ..., N − 1

with φ(t0) = ξ. Use linear interpolation to get

φ(t) = φ(tj) + f(tj , φ(tj))(t− tj), t ∈ [tj+1, tj ]

Notice, φ(t) is continuous, but not differentiable at the nodes {tj}

5 Linear Systems {
~x′ = A(t)~x + g(t)

~x(τ) = ξ

where A ∈ Rn×n, g ∈ Rn. A ∈ C((a, b),Rn×n) and g ∈ C((a, b),Rn). There is a unique solution of the IVP
for every (τ, ξ) ∈ (a, b) ∈ Rn that is valid on (a, b). Under the above assumption, the set of solutions to the
homogenous problem (g(t) ≡ 0) is an n-dimensional linear space. So if ~φ(t) is the solution to ~x′ = A(t)~x,

~x(τ) = ~ei, then ~ψ(t) =
n∑
i=1

ξi~φi(t) is in the span
{
~φ1(t), ..., ~φn(t)

}
. Thus we have a basis for our solution

space. Denoting Φ(t) = (~φ1(t), ..., ~φn(t)), then

Φ′(t) = A(t)Φ(t)

12
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5.1 Determinants

Properties

• d

5.2 The Homogenous Case {
~x′ = A(t)~x

~x(τ) = ξ

5.2.0.1 Superposition Principle
If x1(t), x2(t) are solutions then so is x3(t) = c1x1(t) + c2x2(t) for any c1, c2.

5.2.0.2 General Solution
A fundamental set of solutions is a set {xi(t)}i such that they form a linearly independent set of solu-
tions. Then x(t) = c1x1(t) + ...cnxn(t) is a general solution (all solutions can be written in this form). The
Fundamental Matrix is

X(t) = (x1(t), ..., xn(t))n×n

Note det [X(t)] 6= 0, and any solution x(t) can be expressed as X(t)~c for some ~c. This means any Y (t) =
X(t)~c is also a fundamental matrix with det [Y (t)] = det [X(t)] 6= 0 .

• If X(t) and Y (t) are fundamental matrices then there exists a nonsingular C such that Y (t) = X(t)C.
In fact, C = X−1(t)Y (t).

5.3 The Inhomogenous Case {
~x′ = A(t)~x + g(t)

~x(τ) = ξ

• If ψ1, ψ2 are two solutions, then ψ = c (ψ1 − ψ2) is a solution of the homogenous case for any c. That is
if we know the fundamental solution set for the homogenous case, we can simply add on a particular
solution to the inhomogenous problem.

5.3.0.3 Variation of parameters
Let X(t) be a fundamental matrix. Consider x(t) = X(t)~c.

x′(t) = X ′(t) ~c(t) +X(t) ~c′(t) = A(t) ~x(t) +X(t) ~c′(t) = A(t)x(t) + g(t)

So let ~c′(t) = X−1(t)g(t) since det [X(t)] 6= 0 for all t. So we have a particular solution

xp(t) = X(t) ~c(t) = X(t)

ˆ t

τ

X−1(s)g(s)ds, τ ∈ (a, b)

Note xp(t) = 0. So any solution of the inhomogenous problem can be written in the form

x(t) = X(t)~c +X(t)

ˆ t

τ

X(s)g(s)ds

13
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However if we consider the IVP with x(τ) = ξ, then pick ~c = X−1(τ)ξ so

x(t) = X(t)X−1(τ)ξ +X(t)

ˆ t

τ

X(s)g(s)ds

and we see
x(τ) = X(τ)X−1(τ)ξ +X(τ)

ˆ τ

τ

X(s)g(s)ds = ξ

5.3.0.4 State Transition Matrix
Now denote the State Transition Matrix Φ(t, τ) = X(t)X−1(τ) and we see since

x(t) = Φ(t, τ)ξ +

ˆ t

τ

Φ(t, τ)g(s)ds

and thus Φ(t, τ) solves the problem {
~X′ = A(t)X
~X(τ) = I

By construction, Phi(t) is uniquely determined.

5.4 Special Case: Constant Coefficient System

If A(t) = A is independent of t, then any solution φ(t) is still a solution when translated so you can take the
initial time to be 0 via the translation φ(t− τ). So then Φ(t, τ) = Φ(t− τ). So we have{

Φ′ = AΦ

Φ(0) = I

Thus the solution is Φ(t) = eAt, where the matrix exponential can be defined in one of three ways:

• eAt =
∞∑
n=0

tn

n!A
n

• X(t) = eAt satisfies X ′ = AX, X(0) = I

• Use an eigendecomposition Λ = V −1AV to get etA = V etΛV −1

We note the properties of the matrix exponential

• d
dte

tA = AetA and e(0)A = I

• AetA = etAA for all t ∈ R

• If AB = BA, then eAeB = eA+B

• et1Aet2A = e(t1+t2)A for all t1, t2

•
(
etA
)−1

= e−tA for all t

• det
(
etA
)

= et tr(A) for all t (Abel’s Formula)

• If B is nonsingular, B−1etAB = etB
−1AB

14
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5.5 2D Constant Coefficients Case

~x′(t) = A~x(t), A =

(
a b
c d

)
Let ~x = ~φ(t, x0) be the solution satisfying ~x(a) = x0

5.5.1 Invertible Matrix Case

If detA = 0, then the only rest point is ~x = ~0. If T = a+ d and D = ad− bc, then λ± = 1
2

(
T ±
√
T 2 − 4D

)
,

and we consider various cases and their subcases.

• T 2 − 4D > 0

– λ− > 0, λ+ > 0 (T > 0, D > 0) Moving along parabolas away from the oringin

– λ− < 0, λ+ < 0 (T < 0, D > 0) Moving along parabolas toward the origin

– λ− < 0 < λ+ < 0 (D < 0) Mixed behavior

• T 2 − 4D = 0

– etJ = eλt
(

1 0
0 1

)
– etJ = eλt

(
1 t
0 1

)

• T 2 − 4D > 0 We have eAtr
(

sin(θ)
cos(θ)

)
= reαt

(
cos (θ + βt)
sin(θ + βt)

)
– T > 0 spirals outward from the origin

– T = 0 rotates about the origin at fixed radius

– T < 0 spirals inward toward the origin

5.6 Periodic Linear Systems

Consider
x′ = A(t)x,A(t+ T ) = A(t)

5.6.0.1 Floquet Theory Let A(t) be an n× n continuous T -periodic matrix.

• If Φ(t) is a fundamental matrix then so is Φ(t+ τ)C for any nonsingular constant matrix C.

• If Φ(t) is a fundamental matrix then there is a nonsingular T−periodic matrix P (t) and a constant
matrix R such that Φ(t) = P (t)etR

Proof: (1) If Ψ = Φ(t+τ), then Ψ′(t) = Φ′(t) = A(t+τ)Φ(t+τ) = A(t)Ψ(t) and det(Ψ(t)) = det(Φ(t+τ)) 6= 0.
(2) Since Φ(t) and Φ(t + τ) are both fundamental matrices there is a nonsingular C such that Φ(t + τ) =
Φ(t)C, with C = Φ−1(0)Φ(t). Since C is nonsingular, C has a logarithm. Let R = 1

T log(C) so that
eTR = elogC = C. Now define P (t) = e−tR so that Φ(t) = P (t)etR. Note that P (t+T ) = Φ(t+T )e−(t+T )R =
Φ(t)Ce−TRe−tR = Φ(t)CC−1e−tR = P (t).
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5.6.1 Monodromy Matrix

There exits a C such that X(t+ τ) = X(t)C. Let R = 1
T log(C). This implies

X(t) = P (t)etR,Φ(t, t0) = X(t)X−1(t0) ⇐⇒

{
Φ′ = A(t)Φ

Φ(t0, t0) = I

The Monodromy Matrix is

M(t0) = Φ(t0 + T, t0) = X(t0 + T )X−1(t0) = P (t0 + T )e(t0+T )Re−t0RP−1(t0) = P (t0)eTRe−1(t0)

If X(t0) = I, then P (t0) = I so M = eTR. Also, if X(0) = I, then X(T ) = X(0)M = M .

5.6.2 Invariants for Periodic Systems

Let X(t) = P (t)etR as before, and suppose Y (t) is another fundamental matrix. Then we know there are
constant nonsingular matrices B, Ĉ such that

Y (t) = X(t)B, Y (t+ T ) = Y (t)Ĉ

We have

Y (t+ T ) = X(t+ T )B = X(t)CB = X(t)eTRB = Y (t)B−1eTRB =⇒ Ĉ = B−1eTRB = eTB
−1RB

So then using previous information,B−1TRB = 1
T log(Ĉ) so then we seeQ(t) = Y (t)e−tB

−1RB is T−periodic.
Thus,

• Any fundamental matrix Y (t) as the form

Y (t) = Q(t)etS , S = B−1RB

where Q(t) is nonsingular and T−periodic and S is a constant matrix that is unquely determined up
to similarity transforms (and branches of the logarithm).

• The eigenvalues of S are the characteristic exponents

• The eigenvalues of eTS are called the Floquet multipliers. Note that if λ is an eigenvalue of S then
ρ = eTλ is an eigenvalue of eTS . If Re(λ < 0, then |ρ| < 1.

Assuming X(0) = I, P (0) = I.

X(t) = PetRη =⇒ X(nT ) = P (nT )enTRη =
(
eTR

)n
η

Let η = α1y1 + α2y2 + ... be the eigenvectors of eTR. So then

X(t) = α1

(
eTR

)n
y1 + ... = α1ρ

n
1y1 + ...

So we see if |ρi| < 1 for all i, then lim
n→∞

X(nT ) = 0 since

‖X(t)‖ ≤ K‖x(nT )‖

So X(0) = I implies M = X(t) and the eigenvalues of M are the Floquet multipliers.
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6 Dynamical Systems

Consider autonomous systems

x′ = f(x), f : Ω→ RN , f ∈ C1(Ω), x(τ) = ξ ∈ Ω

φ(t, τ, ξ) denotes the unique solution. Let ψ(t) = φ(t− τ, 0, ξ) then

ψ′(t− τ, 0, ξ) = f(φ(t− τ, 0, ξ)) = f(ψ(t)), ψ(τ) = ξ

This implies φ(t) = φ(t− τ0, ξ) = φ(t, τ, ξ). So we let φ(t, τ) denot ethe solution of

x′ = f(x), x(0) = ξ

Terminology, The orbit (or trajectory) through ξ is the curve {(t, φ(t, ξ)) : α(ξ) < t < β(ξ)}where (α(s), β(s))
denotes the maximal interval of existence.
Example: x′ = x(1 − x) has solution x = et

et+C . and so for ξ 6= 0, C = 1
ξ − 1 (0 < ξ < 1). We see that

C > 0 =⇒ α(s) = −∞, β(s) = ∞. ξ < 0 =⇒ x(t) is defined on (log
(

1− 1
ξ

)
,∞). ξ > 1 =⇒ x(t) is

defined on (−∞, log
(

1− 1
ξ

)
).

6.1 Straightening the Flow of a Vector Field
dx

dt
= f(x) f(x0) 6= 0

If f(x0) 6= 0, then there is a change of variables to y such that locally, dydt f(x0) everywhere along the plane
perpendicular to f(x0). Let f0 = f(x0), and its jth component is f0j = fj(x0). Consider y = ξ + tf0, where
ξ ∈ P =

{
ξ ∈ RN : (ξ − x0)T f0

}
. This is an orthogonal decomposition of y since y − x0 = ξ − x0 + tf0,

where ξ − x0 ⊥ f0. This implies

t =
(y − x0)T f0

‖f0‖2
= t(y), ξ = y − t(y)f0

Now x = ψ(y) = φ(t, ξ) where t = t(y), ξ = ξ(y), where φ(t, ξ) are defined by x′ = f(x), x(0) = ξ. By the
chain rule,

∂ψ

∂yj
=
∂φ

∂t

∂t

∂yj
+
∂φ

∂ξ

∂ξ

∂yj
=

f0j

‖f0‖2
f(φ(t, s)) + φξ(t, ξ)

(
ej −

f0j

‖f0‖2
f0

)
∂t

∂yj
=

∂

∂yj

(y − x0)T f0

‖f0‖2
,

∂ξ

∂yj
=

∂

∂yj
(y − t(y)f0) = ej −

f0j

‖f0‖2
f0

At y = x0, we have φ(t(x0), ξ(x0)) = φ(0, x0) = x0. φξ(t(x0), ξ(x0)) = φξ(0, ξ) = I. This implies

∂ψ

∂yj
|y=x0 =

f2
0j

‖f0‖2
f(x0) + I

[
ej −

f0j

‖f0‖2
f0

]

By the inverse function theorem, the map x = ψ(y) is locally invertible (a diffeomorphism). If y ∈ P , say
y = ξ ∈ P , then t = 0 and ξ = y. This implies

∂ψ

∂y
(ξ) = [e1 + s1(f − f0) ... en + sn(f − f0)] = I+[s1(f − f0) ... sn(f − f0)] = I+(f−f0)

fT0

‖f0‖2
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This is a rank one perturbation of the identity. This is analoguous to(
I + uvT

)−1
= I − uvT (1− α+ α2 − ...) = I − 1

1 + α
uvT , α = uvT 6= −1

So for x = ψ(y) ⇐⇒ y = ψ−1(x)

f(x) =
dx

dt
=
∂ψ

∂y

dy

dt
=⇒ dy

dt
=

(
∂ψ

∂y

)−1

f(x)

Along P ,
dy

dt
=

(
I +

(f − f0)

‖f0‖2
fT0

)
f(ξ) = f − (f − f0)f0

implies x = φ(0, ξ) = ξ

6.2 Group Properties

Consider the system

x′ = f(x) x(0) = ξ f ∈ C1(Ω),Ω ∈ Rn,Ω↔M, solution: x = φ(t, ξ) STAR!

The semi-group or group property is: φ(t+ s, ξ) = φ(t, φ(s, ξ))/

φt : Ω→ Ωφ(t) = φt ◦ φs, φ0 = id

Consider φ : R× Ω→ Ω solutions all defined on R.
Consider x′ = x(1− x). Let T (ξ) = ln

(
1− 1

ξ

)
α(ξ) =

{
−∞ ξ ≤ 1

T (ξ) ξ > 1
, β(ξ) =

{
T (ξ) ξ < 0

∞ ξ ≥ 0

This defines a set W = U(α(ξ), β(ξ))× {ξ} , ξ ∈ R. Φ : W → R, (t, x)→ φ(t, x)

6.3 Properties of the Flow Generated by STAR

• φ(t+ s, ξ) = φ(t, φ(s, ξ))

• Orbits cannot intersect transversally (ie with different tangent directions)
The trajectory of a solution is the curve {(t, φ(t, s)) : t ∈ (α(ξ), β(ξ))} ⊂ R× Ω. The orbit of a solution
is the curve {φ(t, ξ) : t ∈ (α(ξ), β(ξ))} ⊂ Ω.

• If φ(t1, ξ) = φ(t2, ξ) for some t1 6= t2, then φ(t, ξ) is periodic. Assume t2 > t1 and set ψ1(t) =
φ(t + t1, ξ), ψ2(t) = φ(t + t2, ξ). Then ψ1(0) = ψ2(0) and ψ′1(t) = f(ψ1(t)), ψ′2(t) = f(ψ2(t)) so
ψ1(t) = ψ2(t) :

φ(t+ t1, ξ) = φ(t+ t2, ξ), ∀ t

Set t′ = t+ t1,
φ(t′, ξ) = φ(t′ + t2 − t1, ξ) = φ(t′ + T, ξ)

So we have a period t2 − t1.
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6.4 The Pendulum Equation
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6.3.1 Terminology

• Ω is the phase space or state space

• A point x0 such that f(x0) = 0 is called a critical point or equillibrium point, rest pt, steady state, fixed
pt

• A critical pt x0 is said to be non-degenerate if there is a neighborhood of x0 that does not contain any
other critical points.
Note if Df(x0) is non-singular, then x0 is isolated by the inverse function theorem.

•

6.4 The Pendulum Equation (
θ
θ′

)′
=

(
θ′

− g
L sin(θ)

)
The rest points are F (θ, θ′) = 0 ⇐⇒ θ = nπ, n ∈ Z, θ′ = 0. This equation can be seen as

θ′′ +
g

L
sin(θ) = 0 ⇐⇒ (θ′)2 +

2g

L
(1− cos(θ)) = const

that is, we notice the energy E(θ, θ′) = (θ′)2 + 2g
L (1 − cos(θ)) along an orbit is constant. So the orbits are

the level curves of the energy. We notice that E(θ, θ′) is 2π−periodic and symmetric about both axes.
Consider the solution through (0, θ′0) where θ′0 > 0

E(θ, θ′) = E(0, θ′0) = θ′0 =⇒ θ′ =

√
θ′20 −

2g

L
(1− cos(θ))

We have three cases

• 0 < θ′20 < 4g
L , there is a θ ∈ (0, π) st θ′ = 0

• 4g
L < θ′20 , there is no such value. That is, θ′ > 0 always

• θ′20 = 4g
L

http : //dmpeli.math.mcmaster.ca/Matlab/CLLsoftware/Pendulum/Pendulum2.gif

6.5 Critical Points

A critical point x0 is said to be Lyapunov stable if for any given ε > 0 there is a δ > 0 such that for all points
ξ ∈ B(x0, δ) = {x ∈ Rn : ‖x− x0‖ < δ} the solution of

x′ = f(x), x(0) = ξ, (with solution φ(t, ξ)) =⇒ ‖φ(t, ξ)− x0‖ < ε ∀ t > 0

A critical point x0 is said to be asymptotically stable if it is stable and there is a number 0 > 0 such that
ξ ∈ B(x0, δ0) implies lim

t→∞
φ(t, ξ) = x0.

6.5.0.1 Theorem Consider x′ = Ax. If the real part of the eigenvalues of A are all negative, then
x = 0 is an isolated rest point that is asymptotically stable (in fact, exponentially stable) since ‖φ(t, ξ)‖ ≤
Ke−λ1t‖ξ‖ . So given ε, choose δ = ε

δ so

‖φ(t, ξ)‖ ≤ Ke−λ1tδ ≤ Kδ = ε, t ≥ 0

So x = 0 is stable. And ‖φ(t, ξ)‖ → 0 as t→ 0 so φ(t, ξ)→ 0 as t→∞.
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6.5.0.2 The Principle of Linearized Stability Suppose x0 ∈ Ω is a critical point of f(x) (f(x0) = 0). Let
A = f ′(x0) so that aij = dfi

dxj
(x0). If all of the eigenvalues of A satisfy Re(λ) < 0 then x0 is an asymptotically

stable rest point of x′ = f(x). Proof: We consider the variational system obtained by changing coordinates
y = x− x0 = φ(t)− x0 . This satisfies

y′ = x′ = f(x) = f(y+x0) = f(y+x0)−f(x0) = f ′(x0)y+h(y) = Ay+h(y) h(y) = f(y+x0)−f(x0)−f ′(x0)y

Clearly x = x0 is asymptotically stable if and only if y = 0 is an asymptotically stable rest point of y =
Ay + h(y). We see that there exist K ≥ 1, α > 0, st

∥∥etA∥∥ ≤ Ke−αt. Let σ > 0 be chosen so that
σ < α

K . Since f ′ ∈ C(Ω) there is a δ0 ∈ (0, ε) such that ‖f ′(x0 + sy)− f ′(x0)‖ < σ for y ∈ Bδ0 . Choose
δ ∈ (0, δ0K

−1) and consider the solution y = ψ(t) of (2) satisfying y0 ∈ Bδ observe that

h(y) =

ˆ 1

0

f ′(x0 + sy)yds− f ′(x0)y =

ˆ 1

0

(f ′(x0 + sy)− f ′(x0))yds =⇒ ‖h(y)‖ ≤ σ‖y‖

We now write for some b > 0,

ψ(t) = etAy0 +

ˆ t

0

e(t−s)Ah(ψ(s))ds 0 ≤ t ≤ b

Since δ < δ0, there is a b > 0, such that ‖ψ(t)‖ < δ0 so

‖ψ(t)‖ ≤ Ke−αtδ +K

ˆ t

0

e−α(t−s)σ‖ψ(s)‖ ds

Using Gronwall’s inequality,

eαt‖ψ(t)‖ ≤ KδeKσt =⇒ ‖ψ(t)‖ ≤ Kδe−(α−Kσ)t < δ0 < ε, 0 ≤ t < b

Define β = sup {b > 0 : ‖ψ(t)‖ < δ0, 0 ≤ t < b}. We must have β =∞ otherwise we reach a contradiction.
If β < ∞ then we obtained, by the same argument as above, ‖ψ(t)‖ ≤ Kδ < δ0, 0 ≤ t < β then there is a
b ≥ β st ‖ψ(t)‖ < δ0, 0 ≤ t < b. Therefore for an autonomous system

• ‖ψ(t)‖ ≤ Kδ < δ0 < ε, t ≥ 0

• ‖ψ(t)‖ ≤ Kδe−(α−Kσ)t t ≥ 0, so lim
t→∞

ψ(t) = 0=

6.5.1 Non-Autonomous Systems

x′ = f(t, x)

For a solution x = φ(t), let y = x− φ(t)

dy

dt
= A(t)y + h(t, y)

h(t, x) = f(t, y + φ(t))− f(t, φ(t))− fx(t, φ(t))y

We want to show ‖h(t, y)‖ ≤ σ‖y‖ for small σ > 0.
Let V : B(r)→ R be continuous and positive definite. Then there are functions ψ1, ψ2 : [0, r]→ [0,+∞]

such that ψ1(0) = ψ2(0) and ψ1(‖x‖ ) ≤ V (x) ≤ ψ2(‖x‖ ). These functions are continuous and strictly
monotone increasing. Note ψ1, ψ2 have inverses with ψi(‖x‖ ) = c ⇐⇒ ‖x‖ = ψ−1

i (c), hence their level
surfaces are spheres.
Proof: Let s ∈ [0, r] and define m(s) = min {V (x) : s ≤ ‖x‖ ≤ r}, M(s) = max {V (x) : ‖x‖ ≤ s}. so
m(‖x‖ ) ≤ V (x) ≤ M(‖x‖ ), x ∈ B(r). Also, m(0) = M(0), m(s) > 0, M(s) > 0 for s > 0 since V is
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positive definite. Also the functions are continuous. We show this for m(s). Let ε > 0. Since B(r) is
compact V : B(r) → R is uniformly continuous. Hence there is a δ > 0 such that |V (x1)− V (x2)| < ε
provided ‖x1 − x2‖ < δ, for all x1, x2 ∈ B(r). Consider 0 < s1 < s2 ≤ r, with |s1 − s2| < δ. Since
{x : s2 ≤ ‖x‖ ≤ r} ⊂ {x : s1 ≤ ‖x‖ ≤ r}, we have m(s1) ≤ m(s2). We want to show m(s2) − ε ≤ m(s1).
Suppose x ∈ {x : s1 ≤ ‖x‖ ≤ s2} and set z = s2

x
‖x‖ . Then ‖z‖ = s2 so V (z) ≥ m(s2). Also,

z − x = s2
x

‖x‖
− ‖x‖ x

‖x‖
= (s2 − ‖x‖ )

x

‖x‖
=⇒ ‖z − x‖ = s2 − ‖x‖ ≤ s2 − s1 < δ

so
|V (z)− V (x)| < ε =⇒ V (x) > V (z)− ε ≥ m(s2)− ε

This shows V (x) > m2(s)− ε for all x ∈ {x : s1 ≤ ‖x‖ ≤ s2}. Thus we can conclude

m(s2)− ε < m(s1) ≤ m(s2) < m(s2) + ε

so then |s1 − s2| < δ implies |m(s1)−m(s2)| < ε. We have m(s),M(s) satisfying all of the required
properies except for the strictly monotone increasing property. To arrange for this we define ψ1(s) = s

rm(s)
and ψ2(s) = (s+ 1)M(s) so these are strictly increasing.

6.5.1.1 Regularity of Sub-Level solutions Let V : B(r)→ R is continuous and positive definite and set
S =

{
x ∈ B(r) : V (x) < c

}
. Since V (0) = 0, Sc 6= ∅, for all c > 0. Let ψ1, ψ2 : [0, r] → [0,∞] be continous

strictly increasing functions such that ψ1(‖x‖ ) ≤ V (x) ≤ ψ2(‖x‖ ), x ∈ B(r). We want to show there are
numbers ρ1, ρ2 such that B(ρ1) ⊂ Sc ⊂ B(ρ2). ρ1 = ψ−1

2 (c), ρ2 = ψ−1
1 (c). x ∈ B(ρ1) ⇐⇒ ‖x‖ < ρ1 =⇒

V (x) ≤ ψ2(‖x‖ ) < ψ2(ρ1) = c =⇒ x ∈ Sc. x ∈ Sc =⇒ ψ1(‖x‖ ) ≤ V (x) < c =⇒ ψ−1
1 (c) = ρ2 =⇒ x ∈

B(ρ2)

6.6 Lyapunov Method

x′1 = x2, x
′
2 = −x1 − x2

1x2

(0, 0) is a critical point. We want to linearize this system at (0, 0). We might say x′1 = x2, x
′
2 = −x1. The

eigenvalues are ±i, so there is no conclusion about the stability of (0, 0) in nonlinear problem. Instead, we
have the Lyapunov approach. Let V (x) = x2

1 + x2
2 if φ is any solution of the system

d

dt
V (φ(t)) =

d

dt

(
φ2

1 + φ2
2

)
= 2φ1φ

′
1 + 2φ2φ

′
2 = −2φ2

1φ
2
2 ≤ 0

V (φ(t)) is monotone decreasing and strictly positive unless φ1 = φ2 = 0 and t→∞V (φ(t)) = V0 exists,
V0 ≥ 0. It also implies (0, 0) is a stable equilibrium. In this example V is the Lyapunov function. The key
property is that t → V (φ(t)) is monotone decreasing when φ is a solution of the given ODE system. Use
the following setup.
Let f(x0) = 0, u = u(x0) is an open set in RN containing x0. V : U → R, V ∈ C(R). V (x0) = 0, V (x) > 0,
x 6= x0 (positive definiteness condition). t → V (φ(t)) monotone decreasing if is a solution of x′ = f(x).
Then we say V is a Lyapunov function of the system x′ = f(x).
Example : V (x) = x2

1 + x2
2 in the above example has all of these properties.

Example: Hamiltonian System. x→ (p, q) q′ = ∂H
∂p p

′ = for some function H(p, q). The Hamiltonian function

d

dt
H(p(t), q(t)) =

∂H

∂p
p′ +

∂H

∂q
q′ = −∂H

∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0

SoH(p(t), q(t)) is constant on any solution. Suppose p, q are both 1D, and then supposeH(p, q) = ap2+bq2.
Positive definiteness depends on a, b. Since H(p, q) is constant on a solution, it is a level curves of a hy-
perbola if ab < 0, or ellipse if ab > 0. In the latter case, either ±H is PD and thus is the Lyapunov function,
but no such function exists in the former case. So H may or may not be a Lyapunov function depending on
details of H and equillibrium point (p0, q0).
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6.6.0.2 Lie Derivative Assume the system is x′ = f(x), f ∈ C1. V : RN → R is C1 also if x = φ(t) is a
solution.

d

dt
V (φ(t)) = V (φ(t)) · φ′(t) = V (φ(t)) · f(φ(t)) = W (φ(t))

where W is continuous and is the derivative of V along a solution. W is called the Lie Derivative of V along
the vector field f . Note that we don’t need to know any solution φ(t) to compute W . In the above example,
we have W (x) = −x2

1x
2
2 and W (x) = 0 respectively. Notice that W ≤ 0 in these cases, so we say W is

negative semidefinite.

6.6.0.3 Lie Derivative and Stability Theorem: Assume V is a Lyapunov functions. If W is negative
sem-definite, then x0 is stable. If W is negative definite then x0 is asymptotically stable.
Proof: WLOG let x0 = 0. By previous lemma there exist r > 0 and ψ1, ψ2 which are continuous on C [0, r]
strictly increasing, ψ1(0) = ψ2(0) = 0 such that φ1(‖x‖ ) ≤ ψ2(‖x‖ ), ‖x‖ ≤ r. Pick ε ∈ (0, r), c = ψ1(ε),

δ = ψ−1
2 (c) so B(δ) ⊂

{
x ∈ B(r) : V (x) < c

}
⊂ B(ε). Let the starting point of a solution ξ ∈ B(δ) x = φ(t)

will be the solution of the system with φ(0) = ξ. Then W ≤ 0 =⇒ V (φ(t)) < V (φ(0)) = V (ξ) < c for all
t > 0. This implies ‖φ(t)‖ < ε for all t > 0 so 0 is stable.
Now suppose W is negative definite. Then there exist ψ3 ∈ C [0, r] strictly increasing st W (x) ≤ −ψ3(‖x‖ ).
d
dtV (φ(t)) = W (φ(t)) < 0 if φ(t) 6= 0. This implies

ψ1(‖φ(t)‖ ≤ V (φ(t)) ≤ V (ξ)−
ˆ t

0

ψ3(‖φ(s)‖ )ds

by FTC and W ≤ −ψ3. If V (φ(t)) does not converge to 0, then it is bounded below say by c0. We see

ψ2(‖φ(t)‖ ) ≥ V (φ(t)) ≥ c0 =⇒ ‖φ(t)‖ ≥ ψ−1
2 (c0) = ρ0

this implies

0 < ψ1(ρ0) ≤ V (ξ)−
ˆ t

0

ψ3(ρ0)ds = V (ξ)− tψ3(ρ)→ −∞, t→∞

Thus we have reached a contradiction, which implies V (φ(t))→ 0. φ(t)→ 0 since ‖φ(t)‖ ≤ ψ−1
1 (V (φ(t))→

0.
Example, x′1 = −x1 − x2, x′2 = 2x1 − x3

2. Choose V (x) = 2x2
1 + x2

2. The properties of V (x) can be checked
showing (0, 0) is asymptotically stable.

6.6.0.4 Stability via Lyapunov Functions Theorem: x = 0 a rest point of x′ = f(x). Let V : B(0) →
(0,∞) be continuous, positive definite. W = V · f negative semi definite implies x = 0 is stable OR if it is
negative definite implies x = 0 is asymptotically stable.

6.7 Gradient Sytems

x′ = F (x) where F (x) = −f(x) for some f : Rn → R. Choose V (x) = f(x). Then

V · F = f · F (x) = −‖f(x)‖2

Suppose x0 is an isolated rest point of x′ = F (x) = −f(x) and that f(x) has a strict local minimum at
x0. Then x0 is asymptotically stable rest point of x′ = F (x). Suppose x0 is an isolated rest point of x′ =
F (x) = f(x) and that f(x) has a strict local minimum at x0. Then x0 is an asymptotically stable rest point of
x′ = F (x). f(x) has a strict local minimum at x0 implies f(x)− f(x0) > 0. For x ∈ {x : 0 < ‖x− x0‖ < δ1}.
x0 an isolated rest point implies F (x) 6= 0 in some neighborhood.
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6.8 ??

x′ = f(t, x), x(t0) = x0 with solution φ(t, t0, x0).
Let x = ψ(t) be a solution defined for t0 ≤ t ≤ ∞ we say ψ(t) is stable (Lyapunov) if ther eis a b > 0 such that
‖x0 − ψ(t0)‖ ≤ b implies φ(t, t0, x0) exists for all t ≥ t0, and given ε > 0 there is a δ = δ(ε, ψ(t0), f) ∈ (0, β)
such that ‖x0 − ψ(t0)− ψ(t)‖ < ε for all t ≥ t0. ψ(t) is asymptotic stable if in addition there is another
δ ∈ (0, b) such that ‖x0 − ψ(t0)‖ < δ implies ‖φ(t, t0, x0)− ψ(t)‖ → 0 as t → ∞. Suppose x = ψ(t) is a
solution for t ≥ t0. Set y = x− ψ(t). Then

y′ = x′ − ψ′(t) = f(t, x)− f(t, ψ(t)) = A(t)y + h(t, y)

where A(t) = fx(t, ψ(t)), h(t, y) = f(t, y + ψ(t))− f(t, ψ(t))− fx(t, ψ(t))y.

h(t, y1)− h(t, y2) =

ˆ 1

0

(fx(t, y2 + s(y1 − y2) + ψ(t))− fx(t, ψ(t))) (y2 − y1)ds

So 0 ≤ s ≤ 1 implies

‖(y2 + s(y1 − y2) + ψ(t))− ψ(t)‖ = ‖sy1 + (1− s)y2‖ ≤ s‖y1‖ + (1− s)‖y2‖

If ‖y1‖ , ‖y2‖ < δ, then ‖(y2 + s(y1 − y2)ψ(t))− ψ(t)‖ ≤ δ. So fx(t, y) is uniformly continous as long as we
restrict t to lie in [t0, t0 + T ] for some T > 0 (and assume ‖y2‖ , ‖y1‖ ≤ ρ). This implies for all ε > 0, δ > 0,
such that ‖h(t, y1)− h(t, y2)‖ < ε provided t ∈ [t0, t0 + T ] and y1, y2 ∈ Bδ.
Now suppose ψ(t) is a T−periodic solution of x′ = f(t, x) where f(t + T, x). y = x − ψ(t) implies y′ =
A(t)y + h(t, y). A(t) = fx(t, ψ(t)) so A(t+ T ) = fx(t+ T, ψ(t)) = fx(t, ψ(t)) = A(t).

h(t+ T, y) = f(t+ T, y)− f(t+ T, ψ(t+ T ))− fx(t+ T, ψ(t+ T ))y = h(t, y)

Theorem: If the Floquet Multipliers of x′ = A(t)x all lie in {z ∈: |z| < 1}, then ψ(t) is asymptotically stable.
Idea of Proof: Let Φ(t) = P (t)etR be the fundamental matrix with Φ(0) = I. We have P (0) = I and
P (t + T ) = P (t), t ∈ R. If λ is a Floquet multiplier then λ = eTρ, where ρ is an eigenvalue of R.
|λ| < 1 ⇐⇒ Re(ρ) < 0.

P−1(t)

(
y(t) = P (t)etRy(0) + P (t)etR

ˆ t

0

e−sRP (s)h(s, y(s))ds

)
gives us for w(t) = P−1(t)y(t),

w(t) = etRw(0) +

ˆ t

0

e(t−s)RP−1(s)h(s, P (s)w(s))ds

which implies
w′ = Rw + g(t, w), g(t, w) = P−1h(t, P (t)w(t))

and we note that w = 0 ⇐⇒ y = 0. Note

‖g(t, w1)− g(t, w2)‖ ≤
∥∥P−1(t)

∥∥ ‖P (t)w1 − P (t)w2‖ ε1 ≤ ε1
∥∥P−1(t)

∥∥
∞‖P (t)‖∞‖w1 − w2‖ ≤ ε‖w1 − w2‖

Given that we can choose ε1 < ε(
∥∥P−1(t)

∥∥
∞‖P (t)‖∞)−1

Now we use a slightly modified proof of asymptotic stability for w = 0 solution of w′ = Rw + g(t, w) to show
y = 0 is asymptotic stable solution of y′ = A(t)y+h(t, y) and ψ(t) is an asym. stable solution of x′ = f(t, x).
Note. Suppose x = ψ(t) is a T−periodic solution of x′ = f(x). It turns out that the linear variation system
in this case always has a Floquet multiplier λ = 1 . This is seen as follows.

ψ′(t) = f(ψ(t)) =⇒ ψ′′(t) = fx(ψ(t))ψ′(t) =⇒ (ψ′)′(t) = A(t)ψ′(t)

which implies ψ′(t) is a solution of y′ = A(t)y. So ψ′(t) = Φ(t)ψ′(0) implies ψ′(T ) = Φ(T )ψ′(0). ψ(t+ T ) =
ψ(t) implies ψ′(T ) = ψ′(0) implies Φ(T )ψ′(0) = λψ′(0) = (1)ψ′(0)
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6.9 Invariant Sets

x′ = f(x) f ∈ C1(Ω),Ω ∈ RN , open

Definition: A set of points E ∈ Ω is said to be a positively /negatively (respectively) invariant if for each
x0 ∈ E the solution φ(t, x0) of the above equation through satisfies φ(t, x0) ∈ E for all t ≥ 0, t ≤ 0
(respectively). Sets are invariant if they are both positvely and negatively invariant. Examples:

• If f(x0) = 0 then {x0} is an invariant set

• If φ(t, x0) is T− periodic thne the solution will be the orbit

(x0) = {φ(t, x0) : 0 ≤ t ≤ T}

• Consider x′ = f(x) = −x(1 − x2). {(−.5, .5)} is positively invariant, {(.5, 1.5)} is negatively invariant.
{(−1, 1)} is invariant. [(−1, 1)] is invariant.

• If V ∈ C1(Ω) is a Lyapunov function for the above equation, f(0) = 0, and V (x) · f(x) ≤ 0, x ∈ Bδ for
some δ > 0 then Sc = {x ∈ Bδ : V (x) ≤ C} is positively invariant for c > 0.

Definition. Suppose φ(t, x0) is a solution that exists for all t ≥ 0. The positive limit set, denoted by ω(x0), of
x0 (or φ(t, x0)) is the set of all points y ∈ Ω for which there is a sequence of times {tn} satisfying (1) tn →∞
as n→∞ and (2) φ(tn, x0)→ y as n→∞. The α-limit set is α(x0) = ∩τ≤0 {φ(t, x0) : t ≤ τ}.
Lemma: If the oslution φ(t, x0) exusts for all t ≥ 0 and the orbit +(x0) = {φ(t, x0) : t ≥ 0} remains in
a compact set K ⊂ Ω, then ω(x0) is a nonempty compact subset of Ω that is invaraint. Furthermore
dist(φ(t, x0), ω(w0))→ 0 as t→∞ (although not uniquely).
Proof. ω(x0) is nonempty: Let {tn} ⊂ [0,∞) be a sequence with tn → ∞. Then {φ(tn, x0)} is a sequence
contained in K. Hence there is a subsequence {φ(tnk

, x0)} ⊂ K and a point y ∈ K such that φ(tnk
, x0)→ y

as h→∞. This implies y ∈ ω(x0) 6= ∅.
ω(x0) is closed: Suppose {xn} ⊂ ω(x0) and xn → y as n→∞. For each n there is a tn > n such that

‖φ(tn, x0)− xn‖ <
1

n

which implies

‖φ(tn, x0)− y‖ ≤ ‖φ(tn, x0)− xn‖ + ‖xn − y‖ <
1

n
+ ‖xn − y‖

So φ(tn, x0)→ y as n→∞ so y ∈ Ω(w0). This means omega limit set is compact since is a closed subset
of a compact set K.
ω(x0) is invariant: Let y ∈ ω(x0) and choose {tn} so that xn = φ(tn, x0) → y as n → ∞. By continuous
dependence we know φ(t, xn) → φ(t, y) as n → ∞, for each t ∈ (α(y), β(y)) where (α(y), β(y)) is the
maximal interval of existence of φ(t, y). But then φ(t + tn, x0) = φ(t, φ(tn, x0)) = φ(t, xn) → φ(t, y) as n →
∞. This implies φ(t, y) ∈ ω(x0) for all t ∈ (α(y), β(y)). ω(x0) ⊂ K =⇒ (α(y), β(y)) = (−∞,∞). φ(t, x0)→
ω(x0) as t → ∞. We need to show that for any ε > 0 there is a T ≥ 0 such that dist(φ(t, x0), ω(w0)) < ε.
Suppose this is not true. Then for some ε > 0 there is a sequence {tn} such that dist(φ(tn, x0), ω(w0)) ≥ ε.
But {φ(tn, x0)}K implies there is a subsequence {φ(tn, x0)} and a point y ∈ Kφ(tnk

, x0) → y as k → ∞.
So t ∈ ω(x0). Therefore there are times tn such that dist(φ(t, x0), ω(w0)) < ε.

6.9.0.5 Lemma
x′ = f(x) x(0) = x0

φ(t, x0) exists for all t ≥ 0. +(x0) = {x = φ(t, x0) : t ≥ 0} ⊂ K, compact which implies ω(x0) non-empty,
compact, invariant and φ(t, x0) → ω(x0) as t → ∞. Also ω(x0) is also connected. Ie ω(x0) cannot be
decomposed into 2 disjoint closed sets.
Proof: If not e have ω(x0) = U ∪ V where U, V are closed (therefore compact) and U ∩ V = ∅. Let
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d = dist(U, V ). Since U, V are compact and disjoint, d > 0. But then there are sequences of times {t2n}
and {t2n+1} such that tn+1 > tn for all n and dist(φ(t2n), U) < 1

3d, dist(φ(t2n+1), V ) < 1
3d. Since the

distance function is continuous, the function f(t) = dist(φ(t, x0), U) is continuous. We have f(t2n) < d
3

and f(t2n+1) > 2d
3 . So by IVT, there is a time t̃n, t2n < t̃n < t2n+1 such that dist(φ(t̃n, x0), U) > 1

3d and
dist(φ(t̃n, x0), V ) > 1

3d. Hence ñ→∞ and φ(t̃n, x0)→ ω(x0) and ω(x0) /∈ U ∪ V : a contradiction.

6.9.0.6 Lemma
x′ = f(x) f ∈ C1(Ω)

Let V ⊂ C1(Ω) and W (x) = V (x) · f(x) ≤ 0, x ∈ Ω. Suppose x0 ∈ Ω and φ(t, x0) exists for all t ≥ 0with
+(x0) ⊂ K,a compact set, so that ω(x0) is non-empty. Then W (x) = 0, x ∈ ω(x0).
Proof: We have d

dtV (φ(t, x0)) = (φ(t, x0)) · f(φ(t, x0)) ≤ 0 which implies t → (φ(t, x0)) is a non-increasing
function. Also V (φ(t, x0)) is bounded below since φ(t, x0) ∈ K, t ≥ 0. Then lim

t→∞
V (φ(t, x0)) = V∞, which is

some number. Now suppose y1, y2 ∈ ω(x0). There are sequences {tn} , {sn} such that φ(tn, x0) → y1 and
φ(sn, x0)→ y2 where tn, sn →∞. Then the continuity of V implies

lim
n→∞

V (φ(tn, x0)) = V (y1) = V∞ = V (y2) = lim
n→∞

V (φ(sn, x0))

Therefore V (x) is constant on ω(x0) which implies W (x) = 0, x ∈ ω(x0).

6.9.0.7 Theorem
x′ = f(x) f(0) = 0

Suppose V ∈ C1(Br) is positive definite, W (x) = V · f(x) ≤ 0, x ∈ Br and Sc = {x ∈ Br : V (x) ≤ c}
is contained in a compact subset of Br for some c > 0. If the only invariant subset of the set z =
{x ∈ Br : W (x) = 0} is {0}, then x = 0 is asymptotically stable.
Proof: Choose x0 ∈ Sc. Since V (φ(t, x0)) ≤ c, t ≥ 0. We have +(x0) remains in a compact set. Hence
ω(x0) is nonempty and invariant. Also ω(x0) ∈ z, but then ω(x0) = {0} for any x0Sc.

6.9.0.8 Example Consider
x′ = (A−By)x y′ = (Cx−D)y

The rest points are x = 0 or y = A
B . y = 0 or x = D

C . The invariant sets are L1 = {(x, y) : x = 0, y ≥ 0},
L2 = {(x, y) : x ≥ 0, y = 0}, Q = {(x, y) : x > 0, y > 0}. We can remove the dimensions in space by the
transformation x̃DC , ỹAB = y. We can scale time by using τ = At and let a = D

A . So our new equations are

x̃′ = (1− y)x ỹ′ = a(x− 1)y

Set f(x) = x − ln(x) − 1. Consider V (x, y) = af(x) + f(y). This is constant along solutions since its an
integral curve of the separable equation. So by construction, V (1, 1) = 0, V (x, y) > 0.

6.9.0.9 Example Consider

x′ = (1− y − λx)x = α(x, y)x y′ = a(x− 1− µy)y = β(x, y)y

Where a, λ, µ > 0. There are four rest points. The one in the first quadrant excluding the axes is

(x0, y0) =

(
1 + µ

1 + λµ
,

1− λ
1 + λµ

)
To create a Lyapunov function for this critical point, we consider a perturbed version of the function in the
previous problem.

V (x, y) = γ1f

(
y

y0

)
+ γ2af

(
x

x0

)
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We seek to determine γ1, γ2. We see

∂V

∂x
=
γ2

x0
af ′
(
x

x0

)
= γ2a

x− x0

xx0

∂V

∂y
=
γ1

y0
af ′
(
y

y0

)
= γ1

y − y0

yy0

For convenience write

α(x, y) = α(x, y)−α(x0, y0) = −(y−y0)−λ(x−x0) β(x, y) = β(x, y)−β(x0, y0) = a((x−x0)−µ(y−y0))

So then〈
∂V

∂x
,
∂V

∂y

〉
·〈xα(x, y), yβ(x, y)〉 = a

(
−γ2

x0

(
(x− x0)(y − y0) + λ(x− x0)2

)
+
γ1

y0
((y − y0)(x− x0)− µ(y − y0))

)
So if we choose γ2 = x0, γ1 = y0,〈

∂V

∂x
,
∂V

∂y

〉
· 〈xα(x, y), yβ(x, y)〉 = −a

(
λ(x− x0)2 + µ(y − y0)2

)
So then

V (x, y) = y0f

(
y

y0

)
+ ax0f

(
x

x0

)
We see that V (x0, y0) = 0, V (x, y) > 0 for (x, y) 6= (x0, y0), and V · 〈xα(x, y), yβ(x, y)〉 is negative definite
so we conclude that (x0, y0) is an asymptotically stable rest point.
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