Part I Ordinary Differential Equation Theory

1 Introductory Theory

An n^{th} order ODE for y = y(t) has the form

 $F(t,y',y'',..,y^{(n)})=0 \qquad \text{(Implicit Form)}$

Usually it can be written

 $y^{(n)} = f(t,y',y'',..,y^{(n-1)}) \qquad \text{(Explicit Form)}$

A solution y is defined on $y: I \to \mathbb{R}$ with $y \in C^n(I)$ for some $I \subseteq \mathbb{R}$ such that

$$y^{(n)}(t) = f(t, y'(t), y''(t), ..., y^{(n-1)}(t)) \qquad \forall t \in I$$

- *n* is the **order** of the ODE. It is the highest derivative to appear in the equation.
- The ODE is linear if F depends linearly on $y, ..., y^{(n)}$

$$y^{(n)} = g(t) + \sum_{i=0}^{n-1} \alpha_i(t) y^{(i)}(t)$$

and is said to be **homogenous** if $g(t) \equiv 0$.

- The ODE is **nonlinear** if F depends nonlinearly on $y^{(n)}$
- If the solution is defined on whole of $\ensuremath{\mathbb{R}}$ then we call it a global solution
- If the solution is defined on a subinterval of $\ensuremath{\mathbb{R}}$ then we call it a local solution

1.1 Senses of Solutions

1.1.0.1 Classical Solution

u' = f in a classical sense if $u \in C^1$ and $u'(x) = f(x) \ \forall \ x$

1.1.0.2 Weak Solution

u' = f in a **weak sense** if $u \in L^1_{loc}$ and u' = f in \mathcal{D}' sense. Classical solutons are always also weak solutions

1.1.0.3 Distributional Solution

u' = f in a **distributional sense** if $u \in D'$ and u' = f in D' sense. Classical solutions and weak solutions are always also distributional solutions

1.1.0.4 Regularity of Solutions For u' = 0 all solutions are classical, weak, and distributional solutions. For xu' = 0 the solution $u = \delta$ is neither classical nor weak. Thus, the regularity of the solution depends on the DE.

1.1.1 Initial Value Problems (IVP)

A problem is an IVP if it is given in the form

$$y^{(n)} = f(t, y', y'', ..., y^{(n-1)})$$
$$y(a) = \gamma_0$$
$$y'(a) = \gamma_1$$
$$\vdots$$
$$y^{(n-1)} = \gamma_{n-1}$$

where a is the lower boundary of the domain.

- Linear IVPs have a unique solution.
- Existence of Solution
 - Local Existence Theorem or Peano Existence Theorem: If f is continuous on \mathbb{R}^n , then every $(t_0, u_0, ..., u_0^{(n-1)})$ there exists an open interval $(t_0 \epsilon, t_0 + \epsilon) = I \subset \mathbb{R}$ with $\epsilon > 0$ that contains t_0 and there exists a continuously differentiable function $u : I \to \mathbb{R}$ that satisfies the IVP.
 - Local Existence Theorem If f is continuous in a neighborhood of $(a, \gamma_0, ..., \gamma_{n-1})$ there exists an open interval $(t_0 - \epsilon, t_0 + \epsilon) = I \subset \mathbb{R}$ with $\epsilon > 0$ that contains t_0 and there exists a continuously differentiable function $u : I \to \mathbb{R}$ that satisfies the IVP.
- Uniqueness of Solution
 - Uniqueness by Continuous Differentiability of f: If ∇f is continuous (if f is continuously differentiable), then the solution is unique.
 - Uniqueness by Lipschitz: If f(u, t) is Lipschitz continuous in u then the solution is unique.
- Gronwall's Inequality: For u(t) continuous and $\phi(t) \ge 0$ continuous defined on $0 \le t \le T$ and u_0 is a constant, if u(t) satisfies

$$\begin{split} u(t) &\leq u_0 + \int_0^t \phi(s) u(s) ds \qquad \text{for } t \in [0,T] \\ \text{then,} \qquad u(t) &\leq u_0 exp\left(\int_0^t \phi(s) ds\right) \qquad \text{for } t \in [0,T] \end{split}$$

A generalization allows $u_0 = \mu(t)$ to depend on time. Then

$$u(t) \le \mu(t) + \int_{t_0}^t v(s)u(s)ds \implies u(t) \le \mu(t) + \int_{t_0}^t \mu(s)v(s)e^{\int_s^t v(z)dz}ds$$

Also, if we consider going backward in time, (again u_0 constant)

$$u(t) \le u_0 + \int_t^{t_0} v(s)u(s)ds, t \le t_0 \implies u(t) \le u_0 e^{\int_t^{t_0} v(s)ds}$$

1.1.2 Boundary Value Problems (BVP)

• A BVP with separated conditions affect multiple endpoints such as in the form

$$g_a(y(a)) = 0, \ g_b(y(b)) = 0$$

• A BVP with **unseparated conditons** affect the endpoints simultaneously, such as in the periodic conditions

$$y(a) - y(b) = 0$$

1.1.3 Systems of ODEs

One could also consider solutions to systems of ODEs. Any ODE can be converted into a first order system of ODEs. Example:

$$x^{\prime\prime\prime} = t + \cos(x^{\prime\prime})e^x$$
 becomes $y^{\prime} = \begin{pmatrix} x^{\prime} \\ x^{\prime\prime} \\ x^{\prime\prime\prime} \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ t + \cos y_3 e^{y_2} \end{pmatrix}$

1.2 Linear Equations

Linear equations are linear in y, and have the form

$$\sum_{j=0}^{n} a_j(t) D^{(j)} y(t) = g(t)$$

Ly = g(t)

Otherwise the ODE is **nonlinear** for some $a_0, a_1, ..., a_n, g$ and $D^k = \frac{d^k}{(dt)^k}$. Note that $a_j(t)$ need not be linear.

1.2.1 General solutions

For $(a_1, a_2, ..., a_n$ continuous; g continuous; $a_n \neq 0$), linear ODEs have infinitely many solutions of the form

$$y(t) = y_p(t) + \sum_{j=1}^n c_j y_j(t)$$

Where $(y_1, y_2, ..., y_n)$ are linearly independent solutions to Ly = 0 and $y_p(t)$ is a particular solution to Ly = g.

• Linear IVPs have a unique solution.

1.2.1.1 Linear Systems of ODEs Any system of linear ODEs can be viewed as the matrix equation

$$\vec{\mathbf{y}}' = A\vec{\mathbf{y}}$$

with solution

$$\vec{\mathbf{y}} = e^{At} \vec{\mathbf{c}}$$
 where $x(t) = y_1(t)$

For a vector of arbitrary constants c determined by intial or boundary values.

• If A is diagonalizable, $A = VDV^{-1}$ with its eigenvectors V, then $e^{At}c = Ve^{Dt}V^{-1}\vec{c}$. Since $V = (\vec{v}_1 \dots \vec{v}_n)$ and we can define arbitrary constants $\vec{d} = V^{-1}\vec{c}$, this becomes

$$\vec{\mathbf{y}}(t) = e^{At}c = d_1 e^{\lambda_1 t} \vec{\mathbf{v}}_1 + d_2 e^{\lambda_2 t} \vec{\mathbf{v}}_2 + \ldots + d_n e^{\lambda_n t} \vec{\mathbf{v}}_n$$

Alternatively you can simply evaluate $Ve^{Dt}V^{-1}\vec{c}$ and take the first component.

1.2.2 Integraton Methods

1.2.2.1 Integrating Factor Given

$$y'(x) + p(x)y(x) = q(x)$$

Multiplying by

$$y'(x)e^{\int pdx} + p(x)e^{\int pdx}y(x) = q(x)e^{\int pdx}$$

Integrating both sides is used with reverse product rule

$$y(x)e^{\int pdx} = \int q(x)e^{\int pdx}dx + c_1$$

1.2.2.2 Variation of Parameters

Given

$$y'' + q(t)y' + r(t)y = g(t)$$

We find the solutions to the associated homogenous equation (y'' + q(t)y' + r(t)y = 0)

$$y_c = (t) = c_1 y_1(t) + c_2 y_2(t)$$

And we want to find a particular solution to y'' + q(t)y' + r(t)y = g(t) in the form

 $y_p = (t) = u_1(t)y_1(t) + u_2(t)y_2(t)$

We let

$$u'_1(t)y_1(t) + u'_2(t)y_2(t) = 0$$
 Condition 1

and so

$$y'_{p} = (t) = u'_{1}(t)y_{1}(t) + u_{1}(t)y'_{1}(t) + u'_{2}(t)y_{2}(t) + u_{2}(t)y'_{2}(t)$$
$$y'_{p} = u_{1}(t)y'_{1}(t) + u_{2}(t)y'_{2}(t)$$

Differentiating

$$y_p'' = (t) = u_1'(t)y_1'(t) + u_1(t)y_1''(t) + u_2'(t)y_2'(t) + u_2(t)y_2''(t)$$

Plugging this into the original equation and cancelling gives

$$u'_{1}y'_{1} + u'_{2}y'_{2} = g(t)$$
 Condition 2

Solving the system given by the two conditions gives

$$u_1' = -\frac{y_2 g(t)}{y_1 y_2' - y_2 y_1'} \qquad \qquad u_2' = \frac{y_1 g(t)}{y_1 y_2' - y_2 y_1'}$$

SO

$$u_1 = -\int \frac{y_2 g(t)}{y_1 y_2' - y_2 y_1'} dt \qquad \qquad u_2 = \int \frac{y_1 g(t)}{y_1 y_2' - y_2 y_1'} dt$$

And so our particular solution is

$$y_p(t) = -y_1(t) \int \frac{y_2g(x)}{y_1y_2' - y_2y_1'} dx + y_2(t) \int \frac{y_1g(x)}{y_1y_2' - y_2y_1'} dx$$

So our general solution is

$$y = y_c(t) + y_p(t)$$

1.2.2.3 Substitution The Bernoulli equation

$$y'(t) + p(x)y = q(x)y^n$$

Can be solved with the substitution $u = y^{1-n}$

$$u = (1-p)(p(x)u + q(x))$$

Which can then be solved with other methods.

1.2.3 Exactly Solvable Cases

First Order Linear Equations

$$y' + p(t)y = q(t)$$

The general solution is

$$y = \frac{1}{M(t)} \int_{t_0}^t q(u)M(u)du + \frac{C}{M(t)}$$

for $M(t) = e^{\int_{s_0}^t p(s)ds}$ and any constant C.

Linear Equations with Constant Coefficients

$$Ly = \sum_{j=0}^{n} a_j D^j y = 0$$

Solutions exist in the form

$$y(t) = e^{\lambda t}$$

where λ is a root of the characteristic polynomial

$$p(\lambda) = \sum_{j=0}^{n} a_j \lambda^j$$

If roots are repeated, the solutions associated with the same root must take on forms that are orthogonal to one another, such as

$$y(t)_1 = e^{\lambda t} , \ y(t)_2 = t e^{\lambda t} , \ y(t)_3 = t^2 e^{\lambda t}$$

The pair of solutions associated with a pair of complex roots must be real, and so for a pair of roots $(\lambda \pm (\alpha + i\beta))$

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 $y_2(t) = e^{\alpha t} \sin(\beta t)$

Euler Type Equations

$$Ly = \sum_{j=0}^{n} a_j (t - t_0)^j D^j y = 0$$

Solutions exist in the form

$$y(t) = (t - t_0)^{\lambda} \qquad t \neq t_0$$

Where λ can be found by using this solution form in the equation, which forms the **indicial equation**

$$\sum_{j=0}^{n} A_j t^j = 0$$

Where $A_n = a_n$ but the other coefficients depend on the nature of the ODE. If the indicial equation has...

1.3 Nonlinear Equations

• two roots, then

$$y(t) = c_1(t - t_0)^{\lambda_1} + c_2(t - t_0)^{\lambda_2}$$

• one root, then one must perform reduction of order. However, solutions typically have a solution that looks something like

$$y(t) = c_1(t - t_0)^{\lambda} + c_2(t - t_0)^{\lambda} \ln|t - t_0|$$

For higher algebraic muliplicities of the root, you will have additional solutions $\{(t - t_0)^{\lambda}(\ln |t - t_0|)^2, ..., (t - t_0)^{\lambda}(\ln |t - t_0|)^2$

• a complex pair of roots $r = \lambda \pm i\omega$, one must solve for the real solutions. Typically you end up with a solution that looks something like

$$y(t) = c_1(t - t_0)^{\lambda} \cos(\omega \ln |t - t_0|) + c_2(t - t_0)^{\lambda} \sin(\omega \ln |t - t_0|)$$

For higher algebraic multiplicities you can solve for real valued solutions of the form

$$(t-t_0)^{\lambda}\cos(\omega\ln|t-t_0|)\ln|t-t_0|, (t-t_0)^{\lambda}\sin(\omega\ln|t-t_0|)\ln|t-t_0|, \dots$$
$$\dots, (t-t_0)^{\lambda}\cos(\omega\ln|t-t_0|)(\ln|t-t_0|)^{m-1}, (t-t_0)^{\lambda}\sin(\omega\ln|t-t_0|)(\ln|t-t_0|)^{m-1}$$

1.2.3.1 Example

$$ax^2y'' + bxy' + cy = 0$$

Yields the indicial equation

$$a\lambda^2 + (b-a)\lambda + c = 0$$

Say a = 1, b = -6, c = 10. Then $\lambda_{1,2} = 2, 5$ and

$$y(t) = c_1 x^2 + c_2 x^5$$

Say a = 1, b = -9, c = 25. Then $\lambda = 5$ and we must additionally solve

$$y(x) = x^5 u(x) \qquad v = u^4$$

which has the solution

$$y(x) = x^5(c_1 \ln |x| + c_2)$$

Say a = 1, b = -3, c = 20. Then $\lambda = 2 \pm 4i$

$$y(x) = c_1 x^2 \cos(4\ln|x|) + c_2 x^2 \sin(4\ln|x|)$$

1.2.4 Relation between Euler Equations and Constant Coefficient Equations

Let $y: (t_0, \infty) \to \mathbb{R}$ for and $Y: (-\infty, \infty) \to \mathbb{R}$ be functions of t and x respectively. Assume they are related by a substitution $x = e^t$. That is, y(t) = Y(x). Then the Euler equation for y can be related to the constant coefficient equation for Y.

1.3 Nonlinear Equations

Nonlinear equations such as

 $y' = y^2$ with $u(t_0) = u_0$

May have a unique solution, but usually only local solution.

1.4 Nonlinear ODEs

Nonlinear ODEs hav the form

$$F(t, y, y', ..., y^{(n)}) = 0$$

where *F* depends nonlinearly on $y^{(n)}$. It may have an explicit form of
$$y^{(n)} = f(t, y', y'', ..., y^{(n-1)})$$
$$y(a) = \gamma_0$$
$$\vdots$$
$$y^{(n-1)}(a) = \gamma_{n-1}$$

2 Solutions

2.1 General Solutions

General Solutions are the set of all solutions to a DE. Generally, a n^{th} order D's general solution has n arbitrary constants.

Normalized Solutions: The solution set (for example $y(x) = c_1y_1(x) + c_2y_2(x)$ to a DE such that when y(x = 0) = 0 and y'(x = 0) = 1.

2.1.1 Well-Posed Problems

A problem is well posed if

- There is one solution (existence)
- The solution is unique (uniqueness)
- The solution depends continuously on the data (stability condition) Small changes in the intial or boundary conditions lead to small changes in the solution

Wronksian: The determinant of the Fundamental Matrix of a set of solutions to a differential equation. A set of solutions to a DE are linearly independent if the Wronskian identically vanishes for all $x \in I$. Note that $W \equiv 0$ does not imply linear dependence.

For f, g, W(f, g) = fg' - gf'. For *n* real or complex valued functions $f_1, f_2, ..., f_n$ which are n - 1 times differentiable on an interval *I*, the Wronksian $W(f_1, ..., f_n)$ as a function on *I* is defined by

$$W(f_1, ..., f_n)(x) = \begin{vmatrix} f_1(x) & \dots & f_n(x) \\ f'_1(x) & \dots & f'_n(x) \\ \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix} x \in I$$

3 Advanced Theory

3.1 First Order Equations

Consider

$$\vec{\mathbf{x}}' = f(\vec{\mathbf{x}})$$

3.1.1 Intervals of existence

Let $F(x) = \int_{x_0}^x \frac{dy}{f(y)}$. If $x = \phi(t)$ is a solution to the ODE, then $F(\phi(t)) = t$ so $F(\phi(0)) = 0$. By the inverse mapping theorem,

$$F(x) = t + t_0 \implies x = F^{-1}(t + t_0) \implies x = F^{-1}(t + F(x_0))$$

Consider two cases

• If $f(x_0) = 0$ then

$$\phi(t) = x_0 \ \forall \ t, u(t) = f(x_0) = f(\phi(t))$$

• If $f(x_0) \neq 0$ then $f \in C(\mathbb{R}) \implies f \neq 0$ in some neighborhood about x_0 . Assuming f(x) > 0 on (a,b), then $F'(x) = \frac{1}{f(x)} > 0$, a < x < b implies F(x) is monotone increasing so $F^{-1}(x)$ exists and $\phi(t) = F^{-1}(t)$ is a solution.

4 New Notes

Basic Existence and Uniqueness

Let $U \in \mathbb{R}^{n+1}$ be open, $f \in C(u)$, and $(t_0, x_0) \in U$. If f satisfies a Lipschitz condition in x uniformly in t on some closed spacetime cylinder S that is contained in U, then there is an interval $[t_0, t_0 + T_0] \subset [t_0, t_0 + T]$ and a unique solution of $x' = f(x, t), x(t_0) = x_0$. Picard iteration converges uniformly to some $\varphi(t)$ that satisfies the IE

$$\varphi(t) = \lim_{k \to \infty} \varphi_{k+1}(t) = \lim_{k \to \infty} \left(x_0 + \int_{t_0}^t f(s, \phi_k(s)) ds \right) = x_0 + t_0^t f(s, \varphi(s)) ds$$

Suppose $\phi(t), \psi(t)$ satisfy

$$\phi(t) = x_0 + \int_{t_0}^t f(s, \phi(s)) ds, \psi(t) = x_1 + \int_{t_0}^t f(s, \psi(s)) ds$$

for $t \in [t_0, t_1]$, then

$$\|\phi(t) - \psi(t)\|_C \le \|x_0 - x_1\| + \int_{t_0}^t L\|\phi(s) - \psi(s)\| ds$$

Satisfies Gronwall's inequality with $u(t) = \|\phi(t) - \psi(t)\|_C$, $u_0 = \|x_0 - x_1\|$, and v(s) = 1. Thus

$$\|\phi(t) - \psi(t)\|_C \le \|x_0 - x_1\| \ e^{L(t-t_0)} \implies \max_{t_0 \le t \le t_1} \|\phi(t) - \psi(t)\|_C \le \|x_0 - x_1\| \ e^{L(t_1 - t_0)}$$

So $x_1 = x_0 \implies \phi(t) = \psi(t)$, and the solution depends continuously on the initial data.

Let $\phi(t)$ be the solution of $x' = f(t, x), x(t_0) = x_0$ and let $\psi(t)$ be the solution of $x' = f(t, x), x(t_1) = x_1$ Suppose both solutions exist of a common interval (a, b) with $t_0, t_1 \in (a, b)$. We know

$$\phi(t) = x_0 + \int_{t_0}^t f(s, \phi(s)) ds, \psi(t) = x_1 + \int_{t_1}^t f(s, \phi(s)) ds, a < t < b$$

Without loss of generality, assume $t_0 < t_1$. So

$$\begin{split} \phi(t) - \psi(t) &= x_0 - x_1 + \int_{t_0}^t f(s, \phi(s)ds - \int_{t_1}^t f(s, \psi(s))ds \\ &= x_0 - x_1 + \int_{t_0}^{t_1} f(s, \phi(s)ds + \int_{t_1}^t f(s, \phi(s)) - f(s, \psi(s))ds \\ \|\phi(t) - \psi(t)\|_C &= \|x_0 - x_1\| + \|t_1 - t_0\| \|f(s, \phi(s))\|_C + L(t - t_1) \|f(s, \phi(s)) - f(s, \psi(s))\|_C \end{split}$$

So letting $\mu = ||x_0 - x_1|| + |t_1 - t_0| ||f(s, \phi(s))||_C$, and $V(s) = L(t - t_1)$, we use Gronwall's to obtain

$$\|\phi(t) - \psi(t)\|_{C} \le (\|x_{0} - x_{1}\| + |t_{1} - t_{0}| \|f(s, \phi(s)\|_{C}) e^{L(t-t_{0})}, t > t_{1}$$

So $x = \phi(t) = \phi(t, t_0, x_0)$. That is, ϕ is a continuous function of the problem parameters as well as t.

Differentiation on \mathbb{R}^n Given $F : \mathbb{R}^N \to \mathbb{R}^N$, we say F(x) is differentiable at $\vec{\mathbf{x}}_0$ if there exists a linear map (matrix) A such that

$$\lim_{h \to 0} \frac{\|F(x_0 + h) + F(x_0) - Ah\|}{\|h\|} = 0$$

We denote $DF(x_0) = A = \frac{\partial F_i}{\partial x_j}(\vec{\mathbf{x}}_0)$ if $F = (F_1, ..., F_N)^T$. F is differentiable at \mathbb{R}^N If F is differentiable for all $\vec{\mathbf{x}}_0 \in \mathbb{R}^N$ then $DF(\vec{\mathbf{x}})$ is a matrix valued function.

 $F \in C^1(\mathbb{R}^N)$ if $x \to DF(\vec{\mathbf{x}})$ is continuous with respect to some norm ???

 $f \in C(U) \implies D_x f \in C(U, \mathbb{R}^{N \times N})$ f is locally Lipschitz continuous in x with respect to t. That is, given a compact subset $U_0 \subset U$, there is a constant L > 0 such that

$$||f(t,x) - f(t,y)|| \le L_{U_0} ||x - y||, \ \forall (t,x), (t,y) \in U_0$$

We assume $U_0 = [\alpha, \beta] \times K$ where K is compact and convex. Let $x, y \in K$ and $s \in (0, 1)$ and define

$$F(s) = f(t, x + s(y - x)), 0 \le s \le 1$$

By the Chain Rule,

$$F'(s) = \frac{d}{ds}f(t, x + s(y - x)) = [f_x(t, x + s(y - x))]_{N \times N} \cdot [(y - x)]_{N \times N}$$

Now consider F(0) = f(t, x), F(1) = f(t, y). So

$$F(1) - F(0) = \int_0^1 F'(s) ds \iff f(t, y) - f(t, x) = \int_0^1 \left[f_x(t, x + s(y - x)) \right]_{N \times N} \cdot \left[(y - x) \right]_{N \times N} ds$$

so let $L = ||||f_x(t, x + s(y - x))|| ||_C$

$$||f(t,y) - f(t,x)||_C \le \int_0^1 L||y - x|| \ ds \le L||y - x||$$

Example: $y' = y^2 = f(y)$

$$f(x) - f(y) = f'(s)(x - y), y \le s \le x$$

We see f'(y) = 2y, so these intervals all have different constants.

4.1 The First Variational Equation

Consider IVP1 $x' = f(t, x) x(t_0) = x_0$. If $f \in C^1(U)$ then $x = \phi(t, \tau, \xi)$ is differentiable in all three variables.

$$\frac{\partial}{\partial t}\frac{\partial}{\partial \tau}\phi = f_x(t,\phi)\cdot\frac{\partial}{\partial \tau}\phi \implies y(t) = \frac{\partial}{\partial \tau}\phi(t,\tau,\xi) \text{ solves } \frac{dy}{dt} = A(t)y$$

We call $\frac{dy}{dt} = A(t)y$ the First Variational Equation, where $A(t) = f_x(t, x, \tau, \xi)$. Performing the same thing for $\frac{\partial}{\partial \varepsilon}$

$$\frac{dX}{dt} = A(t)X$$

So $\phi(t, \tau, \xi)$ satisfies

$$\phi(\tau,\tau,\xi) = \xi \implies \frac{\partial}{\partial\xi}\phi(\tau,\tau,\xi) = I$$

Also,

$$\phi(\tau,\tau,\xi) = \xi \implies \frac{\partial}{\partial t}\phi + \frac{\partial}{\partial \tau} = 0 \implies \frac{\partial}{\partial \tau}\phi = -f(\tau,\xi)$$

 $\phi(t,\tau,\xi)$ has partial derivatives determined by

$$\frac{\partial}{\partial \tau}\phi:\begin{cases} y'=A(t)y & & \frac{\partial}{\partial \xi}\phi: \begin{cases} X'=A(t)X \\ y(\tau)=-f(\tau,\xi) & & \frac{\partial}{\partial \xi}\phi: \end{cases} X(0)=I \end{cases}$$

We want to show

$$\lim_{h \to 0} \frac{\|Q(t,\tau,\xi,h)\|}{\|h\|} = 0, \qquad Q(t,\tau,\xi,h) = \phi(t,\tau,\xi+h) - \varphi(t,\tau,\xi) - X(t)h$$

Let $(\tau,\xi) \in B(t_0,x_0;a_1,b_1)$ and choose h sufficiently small $h \in \mathbb{R}^n$ so that $(\tau,\xi+h) \subset \mathbb{R}_1 = \overline{B(t_0,x_0;a,b)}$. We use

$$\phi(t) = \phi(t,\tau,\xi) \qquad \phi_h(t) = \phi(t,\tau,\xi+h) \qquad A(t) = f_x(t,\phi(t,\tau,\xi))$$

These are all defined on $[\tau - T, \tau + T]$ with $(t, \phi(t)) \in \mathbb{R}^2$ and $(t, \phi_h(t)) \in \mathbb{R}^2$ for $t \in [\tau - T, \tau + T]$. Using $L = \|\|f_x(t, x)\|_1\|_C$ and $\|A(t)\| \leq L$. $t \in [\tau - T, \tau + T]$.

$$\begin{aligned} \|\phi(t) - \phi_h(t)\| &\leq \|h\| \ e^{2LT} \\ \phi(t) &= \xi + \int_{\tau}^{t} f(s, \phi(s)) ds \\ \phi_h(t) &= \xi + h + \int_{\tau}^{t} f(s, \phi_h(s)) ds \\ X(t) &= I + \int_{\tau}^{t} A(s) X(s) ds \end{aligned}$$

So

$$Q(t,\tau,\xi,h) = \int_{\tau}^{t} (f(s,\phi_h(s)) - f(s,\phi(s)) - A(s)X(s)h) \, ds$$

Using $f(t,x) - f(t,y) = \int_0^1 f_x(t,x + \sigma(y-x)) \cdot (y-x) d\sigma$,

$$\|f(t,x) - f(t,y) - f_x(t,x) \cdot (y-x)\| \le \int_0^1 \|f_x(t,x + \sigma(y-x))) - f_x(t,x)\| \|y-x\| d\sigma$$

Since $f_x(t,x)$ is continuous on the compact set R_2 , it is uniformly continuous on R_2 . It follows that $f_x(t,x)$ is uniformly continuous on R_2 .

We seek to use Gronwall's inequality. We see that

$$Q(t,\tau,\xi,h) = \int_{\tau}^{t} \left(f(s,\phi_h(s)) - f(s,\phi(s)) - A(s)(\phi_h(s) - \phi(s)) \right) ds + \int_{\tau}^{t} A(s)Q(t,\tau,\xi,h) ds$$

Continuity of f allows us to pick $\epsilon_1 < \frac{\epsilon}{Te^{3LT}}$ so that

$$\|Q\| \leq \int_{\tau}^{t} \epsilon_{1} \|\phi_{h} - \phi\| \, ds + \int_{\tau}^{t} L \|Q\| \, ds \leq \epsilon_{1} T \|h\| \, e^{2LT} + \int_{\tau}^{t} L \|Q\| \, ds$$

Using Gronwall's inequality, we get

$$\|Q\| \leq \epsilon_1 T \|h\| e^{2LT} e^{TL} < \epsilon$$

4.1.0.1 Differentiability With Respect to a Parameter Consider

$$\begin{cases} x' = f(t, x, \lambda) & x \in \mathbb{R}^N \\ x(\tau) = \xi \end{cases}$$

$$f:U\times\Lambda\to\mathbb{R}^N, U\subset\mathbb{R}^{N+1}, \Lambda\subset\mathbb{R}^P, (\tau,\xi)\in U$$

Let $f \in C^1(U \times \Lambda)$. Solutions of IVP are functions $\vec{\mathbf{x}} = \phi(t, \tau, \xi, \lambda)$. So let $\vec{\mathbf{y}}' = 0, \vec{\mathbf{y}}(\tau) = \lambda$, and we recast our problem as

$$\vec{\mathbf{z}} = \begin{pmatrix} \vec{\mathbf{x}} \\ \vec{\mathbf{y}} \end{pmatrix}_{(n+p)\times 1}, \qquad \vec{\mathbf{z}}' = \begin{pmatrix} \vec{\mathbf{x}}' \\ \vec{\mathbf{y}}' \end{pmatrix} = \begin{pmatrix} f(t,z) \\ 0 \end{pmatrix} = F(t,z), \qquad \vec{\mathbf{z}}(\tau) = \begin{pmatrix} \vec{\tau} \\ \vec{\lambda} \end{pmatrix} = \gamma \implies z = \psi(t,\tau,\gamma)$$

So if we have

$$a(t) = \begin{pmatrix} \frac{\partial}{\partial x} f(t, \psi(t, \tau, \gamma)) & \frac{\partial}{\partial \lambda} f(t, \psi(t, \tau, \gamma)) \\ 0_{p \times n} & 0_{p \times p} \end{pmatrix}$$

Then our matrix DE is

$$Z' = a(t)Z, Z(0) = I \implies Z = \frac{\partial}{\partial\gamma}\psi = \begin{pmatrix} \frac{\partial}{\partial\xi}x & \frac{\partial}{\partial\lambda}x \\ \frac{\partial}{\partial\xi}y & \frac{\partial}{\partial\lambda}y \end{pmatrix} = \begin{pmatrix} x_{\xi} & x_{\lambda} \\ 0 & I_{p} \end{pmatrix}$$

That is,

$$\begin{pmatrix} x_{\xi} & x_{\lambda} \\ 0 & I_{p} \end{pmatrix}' = \begin{pmatrix} f_{x} & f_{\lambda} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\xi} & x_{\lambda} \\ 0 & I_{p} \end{pmatrix} \iff x'_{\xi} = f_{x}x_{\xi}, x'_{\lambda} = f_{x}x_{\lambda} + f_{\lambda}$$

With initial conditions $x_{\xi}(\tau) = I$, $x_{\lambda}(\tau) = 0$.

4.2 Continuation of Solutions

Theorem. If $f \in C^1(U)$ and $x = \phi(t)$ is a solution of our above IVP, defined on an open interval (a, b) containing t_0 . If

$$\{(t, \phi(t)) : a < t < b\} \subset K \subset U$$

for some compact K then $\phi(a^+) = \lim_{t \to a^+} \phi(t)$ and $\phi(b^-)$ both exist as finite values with $(a, \phi(a^+)), (b, \phi(b^-)) \in U$. Hence $\phi(t)$ extends as a continuous function to [a, b] which can be further extended as a solution of x' = f(t, x) to a larger interval.

Proof. Let $M = \max |f(t, x)| : (t, x) \in K$. We know

$$\phi(t_2) - \phi(t_1) = \int_{t_1}^{t_2} f(s, \phi(s)) ds, a < t_1 < t_2 < b$$

so $\|\phi(t_2) - \phi(t_1)\|_C \leq M |t_2 - t_1|$. Thus $\phi(t)$ is uniformly continuous thus $t_n \to b$ produces a Cauchy sequence $\phi(t_n)$ which converges by completeness to $\hat{\phi}(b)$ If s_n us another sequence such that $s_n \to b$,

$$\left\|\hat{\phi}(b) - \phi(s_n)\right\|_{C} \le \left\|\hat{\phi}(b) - \phi(t_n)\right\|_{C} + \|\phi(t_n) - \phi(s_n)\|_{C} \to 0$$

Thus the limit is unique.

Corollary. If $x = \phi(t)$ is a solution on (a, b) and $\phi(t)$ cannot be extended beyond b as a solution, then $(t, \phi(t))$ must leave every compact subset of U as $t \to b^+$. Analogous statements holds at the left endpoint a.

4.2.1 Extension of Solutions

Suppose $\Omega = (a, b) \times \mathbb{R}^N$, $f \in C(\Omega), -\infty \le a < b \le \infty$ and satisfies a Lipschitz condition in x, uniformly in t

$$||f(x,t) - f(t,y)|| \le L||x - y||, \forall (t,x), (t,y) \in \Omega$$

Then solutions of x' = f(t, x) exist on the entire interval (a, b). Notice that for all $t \in [a, b] \subset (a, b)$ and $x \in \mathbb{R}^N$,

$$||f(t,x)|| = ||f(t,0)|| + ||f(t,x) - f(t,0)|| \le \max_{t \in [a,b]} ||f(t,0)|| + L||x|| = M_{\alpha,\beta} + L||x||$$

So for any τ, t such that $\alpha \leq \tau \leq t \leq \beta$ implies

$$\|\phi(t)\| \le \|\phi(\tau)\| + \int_{\tau}^{t} \|f(s,\phi(s))\| \, ds \le \|\phi(\tau)\| + M_{\alpha,\beta}(\beta-\alpha) + \int_{\tau}^{t} L\|\phi(s)\| \, ds$$

Thus $\|\phi(t)\|$ is bounded on $[\alpha, \beta]$ for any compact subinterval of (a, b). That is $(t, \phi(t))$ cannot leave every compact subset of Ω on any interval of the form $[\alpha, \beta] \subset (a, b)$ so the solutions extend to (a, b)

4.3 Existence

$$x' = f(t, x), f \in C(\Omega)$$
 $x(\tau) = 0$

Consider the space-time cylinder $R = \overline{B}(\tau, \xi : a, b) \subset \Omega$. Let $M = \max_{(t,x)\in R} \|f(t,x)\|$. $\alpha = \min\{a, \frac{b}{M}\}$. Choose a partition $\{t_j\}_{j=0}^N$ of $[\tau, \tau + \alpha]$.

$$\tau = t_0 < t_1 < \dots < t_{N-1} < t_N = \tau + \alpha$$

Define an approximate solution $\phi(t)$ by

$$\phi(t_{(j+1)}) = \phi(t_j)_f(t_j, \phi(t_j))(t_{j+1} - t_j), j = 0, \dots, N-1$$

with $\phi(t_0) = \xi$. Use linear interpolation to get

$$\phi(t) = \phi(t_j) + f(t_j, \phi(t_j))(t - t_j), t \in [t_{j+1}, t_j]$$

Notice, $\phi(t)$ is continuous, but not differentiable at the nodes $\{t_i\}$

5 Linear Systems

$$\begin{cases} \vec{\mathbf{x}}' = A(t)\vec{\mathbf{x}} + g(t) \\ \vec{\mathbf{x}}(\tau) = \xi \end{cases}$$

where $A \in \mathbb{R}^{n \times n}$, $g \in \mathbb{R}^n$. $A \in C((a, b), \mathbb{R}^{n \times n})$ and $g \in C((a, b), \mathbb{R}^n)$. There is a unique solution of the IVP for every $(\tau, \xi) \in (a, b) \in \mathbb{R}^n$ that is valid on (a, b). Under the above assumption, the set of solutions to the homogenous problem $(g(t) \equiv 0)$ is an *n*-dimensional linear space. So if $\vec{\phi}(t)$ is the solution to $\vec{\mathbf{x}}' = A(t)\vec{\mathbf{x}}$, $\vec{\mathbf{x}}(\tau) = \vec{\mathbf{e}}_i$, then $\vec{\psi}(t) = \sum_{i=1}^n \xi_i \vec{\phi}_i(t)$ is in the span $\left\{\vec{\phi}_1(t), ..., \vec{\phi}_n(t)\right\}$. Thus we have a basis for our solution space. Denoting $\Phi(t) = (\vec{\phi}_1(t), ..., \vec{\phi}_n(t))$, then

$$\Phi'(t) = A(t)\Phi(t)$$

5.1 Determinants

Properties

• d

5.2 The Homogenous Case

$$\begin{cases} \vec{\mathbf{x}}' = A(t)\vec{\mathbf{x}} \\ \vec{\mathbf{x}}(\tau) = \xi \end{cases}$$

5.2.0.1 Superposition Principle

If $x_1(t), x_2(t)$ are solutions then so is $x_3(t) = c_1x_1(t) + c_2x_2(t)$ for any c_1, c_2 .

5.2.0.2 General Solution

A fundamental set of solutions is a set $\{x_i(t)\}_i$ such that they form a linearly independent set of solutions. Then $x(t) = c_1 x_1(t) + ... c_n x_n(t)$ is a general solution (all solutions can be written in this form). The **Fundamental Matrix** is

$$X(t) = (x_1(t), ..., x_n(t))_{n \times m}$$

Note det $[X(t)] \neq 0$, and any solution x(t) can be expressed as $X(t)\vec{c}$ for some \vec{c} . This means any $Y(t) = X(t)\vec{c}$ is also a fundamental matrix with det $[Y(t)] = \det [X(t)] \neq 0$.

• If X(t) and Y(t) are fundamental matrices then there exists a nonsingular C such that Y(t) = X(t)C. In fact, $C = X^{-1}(t)Y(t)$.

5.3 The Inhomogenous Case

$$\begin{cases} \vec{\mathbf{x}}' = A(t)\vec{\mathbf{x}} + g(t) \\ \vec{\mathbf{x}}(\tau) = \xi \end{cases}$$

If ψ₁, ψ₂ are two solutions, then ψ = c (ψ₁ - ψ₂) is a solution of the homogenous case for any c. That is
if we know the fundamental solution set for the homogenous case, we can simply add on a particular
solution to the inhomogenous problem.

5.3.0.3 Variation of parameters

Let X(t) be a fundamental matrix. Consider $x(t) = X(t)\vec{c}$.

$$x'(t) = X'(t)\mathbf{c}(\mathbf{t}) + X(t)\mathbf{c}'(\mathbf{t}) = A(t)\mathbf{x}(\mathbf{t}) + X(t)\mathbf{c}'(\mathbf{t}) = A(t)x(t) + g(t)\mathbf{c}(\mathbf{t}) = A(t)x(t) + g(t)\mathbf{c}(\mathbf{t}) + g(t)\mathbf$$

So let $\mathbf{c}'(\mathbf{t}) = X^{-1}(t)g(t)$ since det $[X(t)] \neq 0$ for all t. So we have a particular solution

$$x_p(t) = X(t)\mathbf{c}(\mathbf{t}) = X(t) \int_{\tau}^{t} X^{-1}(s)g(s)ds, \tau \in (a,b)$$

Note $x_p(t) = 0$. So any solution of the inhomogenous problem can be written in the form

$$x(t) = X(t) \vec{\mathbf{c}} + X(t) \int_{\tau}^{t} X(s) g(s) ds$$

However if we consider the IVP with $x(\tau) = \xi$, then pick $\vec{c} = X^{-1}(\tau)\xi$ so

$$x(t) = X(t)X^{-1}(\tau)\xi + X(t)\int_{\tau}^{t} X(s)g(s)ds$$

and we see

$$x(\tau) = X(\tau)X^{-1}(\tau)\xi + X(\tau)\int_{\tau}^{\tau} X(s)g(s)ds = \xi$$

5.3.0.4 State Transition Matrix

Now denote the State Transition Matrix $\Phi(t, \tau) = X(t)X^{-1}(\tau)$ and we see since

$$x(t) = \Phi(t,\tau)\xi + \int_{\tau}^{t} \Phi(t,\tau)g(s)ds$$

and thus $\Phi(t,\tau)$ solves the problem

$$\begin{cases} \vec{\mathbf{X}}' = A(t)X\\ \vec{\mathbf{X}}(\tau) = I \end{cases}$$

By construction, Phi(t) is uniquely determined.

5.4 Special Case: Constant Coefficient System

If A(t) = A is independent of t, then any solution $\phi(t)$ is still a solution when translated so you can take the initial time to be 0 via the translation $\phi(t - \tau)$. So then $\Phi(t, \tau) = \Phi(t - \tau)$. So we have

$$\begin{cases} \Phi' = A\Phi\\ \Phi(0) = I \end{cases}$$

Thus the solution is $\Phi(t) = e^{At}$, where the matrix exponential can be defined in one of three ways:

- $e^{At} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n$
- $X(t) = e^{At}$ satisfies X' = AX, X(0) = I
- Use an eigendecomposition $\Lambda = V^{-1}AV$ to get $e^{tA} = Ve^{t\Lambda}V^{-1}$

We note the properties of the matrix exponential

- $\frac{d}{dt}e^{tA} = Ae^{tA}$ and $e^{(0)A} = I$
- $Ae^{tA} = e^{tA}A$ for all $t \in \mathbb{R}$
- If AB = BA, then $e^A e^B = e^{A+B}$
- $e^{t_1A}e^{t_2A} = e^{(t_1+t_2)A}$ for all t_1, t_2

•
$$(e^{tA})^{-1} = e^{-tA}$$
 for all t

- det $(e^{tA}) = e^{t \operatorname{tr}(A)}$ for all t (Abel's Formula)
- If B is nonsingular, $B^{-1}e^{tA}B = e^{tB^{-1}AB}$

5.5 2D Constant Coefficients Case

$$\vec{\mathbf{x}}'(t) = A\vec{\mathbf{x}}(t), A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Let $\vec{\mathbf{x}} = \vec{\phi}(t, x_0)$ be the solution satisfying $\vec{\mathbf{x}}(a) = x_0$

5.5.1 Invertible Matrix Case

If det A = 0, then the only **rest point** is $\vec{\mathbf{x}} = \vec{\mathbf{0}}$. If T = a + d and D = ad - bc, then $\lambda_{\pm} = \frac{1}{2} \left(T \pm \sqrt{T^2 - 4D}\right)$, and we consider various cases and their subcases.

- T² 4D > 0
 λ₋ > 0, λ₊ > 0 (T > 0, D > 0) Moving along parabolas away from the oringin
 λ₋ < 0, λ₊ < 0 (T < 0, D > 0) Moving along parabolas toward the origin
 λ₋ < 0 < λ₊ < 0 (D < 0) Mixed behavior
- $T^2 4D = 0$

$$\begin{aligned} & - e^{tJ} = e^{\lambda t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ & - e^{tJ} = e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \end{aligned}$$

•
$$T^2 - 4D > 0$$
 We have $e^{At}r \begin{pmatrix} \sin(\theta) \\ \cos(\theta) \end{pmatrix} = re^{\alpha t} \begin{pmatrix} \cos(\theta + \beta t) \\ \sin(\theta + \beta t) \end{pmatrix}$

- T > 0 spirals outward from the origin
- T = 0 rotates about the origin at fixed radius
- T < 0 spirals inward toward the origin

5.6 Periodic Linear Systems

Consider

$$x' = A(t)x, A(t+T) = A(t)$$

5.6.0.1 Floquet Theory Let A(t) be an $n \times n$ continuous *T*-periodic matrix.

- If $\Phi(t)$ is a fundamental matrix then so is $\Phi(t + \tau)C$ for any nonsingular constant matrix *C*.
- If $\Phi(t)$ is a fundamental matrix then there is a nonsingular *T*-periodic matrix P(t) and a constant matrix *R* such that $\Phi(t) = P(t)e^{tR}$

Proof: (1) If $\Psi = \Phi(t+\tau)$, then $\Psi'(t) = \Phi'(t) = A(t+\tau)\Phi(t+\tau) = A(t)\Psi(t)$ and $\det(\Psi(t)) = \det(\Phi(t+\tau)) \neq 0$. (2) Since $\Phi(t)$ and $\Phi(t+\tau)$ are both fundamental matrices there is a nonsingular C such that $\Phi(t+\tau) = \Phi(t)C$, with $C = \Phi^{-1}(0)\Phi(t)$. Since C is nonsingular, C has a logarithm. Let $R = \frac{1}{T}\log(C)$ so that $e^{TR} = e^{\log C} = C$. Now define $P(t) = e^{-tR}$ so that $\Phi(t) = P(t)e^{tR}$. Note that $P(t+T) = \Phi(t+T)e^{-(t+T)R} = \Phi(t)Ce^{-TR}e^{-tR} = \Phi(t)CC^{-1}e^{-tR} = P(t)$.

5.6.1 Monodromy Matrix

There exits a *C* such that $X(t + \tau) = X(t)C$. Let $R = \frac{1}{T} \log(C)$. This implies

$$X(t) = P(t)e^{tR}, \Phi(t, t_0) = X(t)X^{-1}(t_0) \iff \begin{cases} \Phi' = A(t)\Phi\\ \Phi(t_0, t_0) = I \end{cases}$$

The Monodromy Matrix is

$$M(t_0) = \Phi(t_0 + T, t_0) = X(t_0 + T)X^{-1}(t_0) = P(t_0 + T)e^{(t_0 + T)R}e^{-t_0R}P^{-1}(t_0) = P(t_0)e^{TR}e^{-1(t_0)}$$

If $X(t_0) = I$, then $P(t_0) = I$ so $M = e^{TR}$. Also, if X(0) = I, then X(T) = X(0)M = M.

5.6.2 Invariants for Periodic Systems

Let $X(t) = P(t)e^{tR}$ as before, and suppose Y(t) is another fundamental matrix. Then we know there are constant nonsingular matrices B, \hat{C} such that

$$Y(t) = X(t)B, \qquad Y(t+T) = Y(t)\hat{C}$$

We have

$$Y(t+T) = X(t+T)B = X(t)CB = X(t)e^{TR}B = Y(t)B^{-1}e^{TR}B \implies \hat{C} = B^{-1}e^{TR}B = e^{TB^{-1}RB}$$

So then using previous information, $B^{-1}TRB = \frac{1}{T}\log(\hat{C})$ so then we see $Q(t) = Y(t)e^{-tB^{-1}RB}$ is T-periodic. Thus,

• Any fundamental matrix Y(t) as the form

$$Y(t) = Q(t)e^{tS}, \qquad S = B^{-1}RB$$

where Q(t) is nonsingular and T-periodic and S is a constant matrix that is unquely determined up to similarity transforms (and branches of the logarithm).

- The eigenvalues of S are the characteristic exponents
- The eigenvalues of e^{TS} are called the Floquet multipliers. Note that if λ is an eigenvalue of S then $\rho = e^{T\lambda}$ is an eigenvalue of e^{TS} . If $Re(\lambda < 0$, then $|\rho| < 1$.

Assuming X(0) = I, P(0) = I.

$$X(t) = Pe^{tR}\eta \implies X(nT) = P(nT)e^{nTR}\eta = \left(e^{TR}\right)^n \eta$$

Let $\eta = \alpha_1 y_1 + \alpha_2 y_2 + \dots$ be the eigenvectors of e^{TR} . So then

 $X(t) = \alpha_1 \left(e^{TR} \right)^n y_1 + \ldots = \alpha_1 \rho_1^n y_1 + \ldots$

So we see if $|\rho_i| < 1$ for all *i*, then $\lim_{n \to \infty} X(nT) = 0$ since

$$||X(t)|| \leq K ||x(nT)|$$

So X(0) = I implies M = X(t) and the eigenvalues of M are the Floquet multipliers.

6 Dynamical Systems

Consider autonomous systems

 $x'=f(x),f:\Omega\to\mathbb{R}^N,f\in C^1(\Omega),x(\tau)=\xi\in\Omega$

 $\phi(t,\tau,\xi)$ denotes the unique solution. Let $\psi(t)=\phi(t-\tau,0,\xi)$ then

$$\psi'(t - \tau, 0, \xi) = f(\phi(t - \tau, 0, \xi)) = f(\psi(t)), \psi(\tau) = \xi$$

This implies $\phi(t) = \phi(t - \tau 0, \xi) = \phi(t, \tau, \xi)$. So we let $\phi(t, \tau)$ denot ethe solution of

$$x' = f(x), x(0) = \xi$$

Terminology, The **orbit (or trajectory)** through ξ is the curve $\{(t, \phi(t, \xi)) : \alpha(\xi) < t < \beta(\xi)\}$ where $(\alpha(s), \beta(s))$ denotes the maximal interval of existence.

Example: x' = x(1-x) has solution $x = \frac{e^t}{e^t + C}$ and so for $\xi \neq 0$, $C = \frac{1}{\xi} - 1$ ($0 < \xi < 1$). We see that $C > 0 \implies \alpha(s) = -\infty, \beta(s) = \infty. \xi < 0 \implies x(t)$ is defined on $\left(\log\left(1 - \frac{1}{\xi}\right), \infty\right). \xi > 1 \implies x(t)$ is defined on $\left(-\infty, \log\left(1 - \frac{1}{\xi}\right)\right)$.

6.1 Straightening the Flow of a Vector Field

$$\frac{dx}{dt} = f(x) \qquad f(x_0) \neq 0$$

If $f(x_0) \neq 0$, then there is a change of variables to y such that locally, $\frac{dy}{dt}f(x_0)$ everywhere along the plane perpendicular to $f(x_0)$. Let $f_0 = f(x_0)$, and its jth component is $f_{0j} = f_j(x_0)$. Consider $y = \xi + tf_0$, where $\xi \in P = \{\xi \in \mathbb{R}^N : (\xi - x_0)^T f_0\}$. This is an orthogonal decomposition of y since $y - x_0 = \xi - x_0 + tf_0$, where $\xi - x_0 \perp f_0$. This implies

$$t = \frac{(y - x_0)^T f_0}{\|f_0\|^2} = t(y), \qquad \xi = y - t(y) f_0$$

Now $x = \psi(y) = \phi(t,\xi)$ where $t = t(y), \xi = \xi(y)$, where $\phi(t,\xi)$ are defined by $x' = f(x), x(0) = \xi$. By the chain rule,

$$\frac{\partial \psi}{\partial y_j} = \frac{\partial \phi}{\partial t} \frac{\partial t}{\partial y_j} + \frac{\partial \phi}{\partial \xi} \frac{\partial \xi}{\partial y_j} = \frac{f_{0j}}{\|f_0\|^2} f(\phi(t,s)) + \phi_{\xi}(t,\xi) \left(e_j - \frac{f_{0j}}{\|f_0\|^2} f_0\right)$$
$$\frac{\partial t}{\partial y_j} = \frac{\partial}{\partial y_j} \frac{(y - x_0)^T f_0}{\|f_0\|^2}, \qquad \frac{\partial \xi}{\partial y_j} = \frac{\partial}{\partial y_j} (y - t(y)f_0) = e_j - \frac{f_{0j}}{\|f_0\|^2} f_0$$

At $y = x_0$, we have $\phi(t(x_0), \xi(x_0)) = \phi(0, x_0) = x_0$. $\phi_{\xi}(t(x_0), \xi(x_0)) = \phi_{\xi}(0, \xi) = I$. This implies

$$\frac{\partial \psi}{\partial y_j}|_{y=x_0} = \frac{f_{0j}^2}{\|f_0\|^2} f(x_0) + I\left[e_j - \frac{f_{0j}}{\|f_0\|^2} f_0\right]$$

By the inverse function theorem, the map $x = \psi(y)$ is locally invertible (a diffeomorphism). If $y \in P$, say $y = \xi \in P$, then t = 0 and $\xi = y$. This implies

$$\frac{\partial \psi}{\partial y}(\xi) = [e_1 + s_1(f - f_0) \qquad \dots \qquad e_n + s_n(f - f_0)] = I + [s_1(f - f_0) \qquad \dots \qquad s_n(f - f_0)] = I + (f - f_0) \frac{f_0^T}{\|f_0\|^2}$$

This is a rank one perturbation of the identity. This is analoguous to

$$(I + uv^T)^{-1} = I - uv^T (1 - \alpha + \alpha^2 - ...) = I - \frac{1}{1 + \alpha} uv^T, \qquad \alpha = uv^T \neq -1$$

So for $x = \psi(y) \iff y = \psi^{-1}(x)$

$$f(x) = \frac{dx}{dt} = \frac{\partial \psi}{\partial y}\frac{dy}{dt} \implies \frac{dy}{dt} = \left(\frac{\partial \psi}{\partial y}\right)^{-1}f(x)$$

Along P,

$$\frac{dy}{dt} = \left(I + \frac{(f - f_0)}{\|f_0\|^2} f_0^T\right) f(\xi) = f - (f - f_0) f_0$$

implies $x=\phi(0,\xi)=\xi$

6.2 Group Properties

Consider the system

$$x' = f(x)$$
 $x(0) = \xi$ $f \in C^1(\Omega), \Omega \in \mathbb{R}^n, \Omega \leftrightarrow M$, solution: $x = \phi(t, \xi)$ $STAR!$

The semi-group or group property is: $\phi(t + s, \xi) = \phi(t, \phi(s, \xi))/$

$$\phi_t: \Omega \to \Omega \phi(t) = \phi_t \circ \phi_s, \phi_0 = \mathrm{id}$$

Consider $\phi : \mathbb{R} \times \Omega \to \Omega$ solutions all defined on \mathbb{R} . Consider x' = x(1-x). Let $T(\xi) = \ln\left(1 - \frac{1}{\xi}\right)$

$$\alpha(\xi) = \begin{cases} -\infty & \xi \le 1\\ T(\xi) & \xi > 1 \end{cases}, \beta(\xi) = \begin{cases} T(\xi) & \xi < 0\\ \infty & \xi \ge 0 \end{cases}$$

This defines a set $W = U(\alpha(\xi), \beta(\xi)) \times \{\xi\}, \xi \in \mathbb{R}. \Phi : W \to \mathbb{R}, (t, x) \to \phi(t, x)$

6.3 Properties of the Flow Generated by STAR

- $\phi(t+s,\xi) = \phi(t,\phi(s,\xi))$
- Orbits cannot intersect transversally (ie with different tangent directions) The trajectory of a solution is the curve {(t, φ(t, s)) : t ∈ (α(ξ), β(ξ))} ⊂ ℝ × Ω. The orbit of a solution is the curve {φ(t, ξ) : t ∈ (α(ξ), β(ξ))} ⊂ Ω.
- If $\phi(t_1,\xi) = \phi(t_2,\xi)$ for some $t_1 \neq t_2$, then $\phi(t,\xi)$ is periodic. Assume $t_2 > t_1$ and set $\psi_1(t) = \phi(t + t_1,\xi)$, $\psi_2(t) = \phi(t + t_2,\xi)$. Then $\psi_1(0) = \psi_2(0)$ and $\psi'_1(t) = f(\psi_1(t))$, $\psi'_2(t) = f(\psi_2(t))$ so $\psi_1(t) = \psi_2(t)$:

$$\phi(t+t_1,\xi) = \phi(t+t_2,\xi), \ \forall \ t$$

Set $t' = t + t_1$,

$$\phi(t',\xi) = \phi(t'+t_2-t_1,\xi) = \phi(t'+T,\xi)$$

So we have a period $t_2 - t_1$.

6.4 The Pendulum Equation

6.3.1 Terminology

- Ω is the phase space or state space
- A point x_0 such that $f(x_0) = 0$ is called a critical point or equillibrium point, rest pt, steady state, fixed pt
- A critical pt x₀ is said to be non-degenerate if there is a neighborhood of x₀ that does not contain any other critical points.

Note if $Df(x_0)$ is non-singular, then x_0 is isolated by the inverse function theorem.

•

6.4 The Pendulum Equation

$$\left(\begin{array}{c}\theta\\\theta'\end{array}\right)' = \left(\begin{array}{c}\theta'\\-\frac{g}{L}\sin(\theta)\end{array}\right)$$

The rest points are $F(\theta, \theta') = 0 \iff \theta = n\pi, n \in \mathbb{Z}, \theta' = 0$. This equation can be seen as

$$\theta'' + \frac{g}{L}\sin(\theta) = 0 \qquad \iff \qquad (\theta')^2 + \frac{2g}{L}(1 - \cos(\theta)) = const$$

that is, we notice the energy $E(\theta, \theta') = (\theta')^2 + \frac{2g}{L}(1 - \cos(\theta))$ along an orbit is constant. So the orbits are the level curves of the energy. We notice that $E(\theta, \theta')$ is 2π -periodic and symmetric about both axes. Consider the solution through $(0, \theta'_0)$ where $\theta'_0 > 0$

$$E(\theta, \theta') = E(0, \theta'_0) = \theta'_0 \implies \theta' = \sqrt{\theta'^2_0 - \frac{2g}{L}(1 - \cos(\theta))}$$

We have three cases

- $0 < \theta_0^{\prime 2} < \frac{4g}{L}$, there is a $\theta \in (0,\pi)$ st $\theta' = 0$
- $\frac{4g}{L} < \theta_0^{\prime 2}$, there is no such value. That is, $\theta' > 0$ always
- $\theta_0^{\prime 2} = \frac{4g}{L}$

http://dmpeli.math.mcmaster.ca/Matlab/CLLsoftware/Pendulum/Pendulum2.gif

6.5 Critical Points

A critical point x_0 is said to be **Lyapunov stable** if for any given $\epsilon > 0$ there is a $\delta > 0$ such that for all points $\xi \in B(x_0, \delta) = \{x \in \mathbb{R}^n : ||x - x_0|| < \delta\}$ the solution of

$$x' = f(x), x(0) = \xi$$
, (with solution $\phi(t,\xi)$) $\implies \|\phi(t,\xi) - x_0\| < \epsilon \forall t > 0$

A critical point x_0 is said to be **asymptotically stable** if it is stable and there is a number $_0 > 0$ such that $\xi \in B(x_0, \delta_0)$ implies $\lim_{t \to \infty} \phi(t, \xi) = x_0$.

6.5.0.1 Theorem Consider x' = Ax. If the real part of the eigenvalues of A are all negative, then x = 0 is an isolated rest point that is asymptotically stable (in fact, exponentially stable) since $\|\phi(t,\xi)\| \leq Ke^{-\lambda_1 t} \|\xi\|$. So given ϵ , choose $\delta = \frac{\epsilon}{\delta}$ so

$$\|\phi(t,\xi)\| \leq Ke^{-\lambda_1 t}\delta \leq K\delta = \epsilon, t \geq 0$$

So x = 0 is stable. And $\|\phi(t,\xi)\| \to 0$ as $t \to 0$ so $\phi(t,\xi) \to 0$ as $t \to \infty$.

6.5.0.2 The Principle of Linearized Stability Suppose $x_0 \in \Omega$ is a critical point of f(x) ($f(x_0) = 0$). Let $A = f'(x_0)$ so that $a_{ij} = \frac{df_i}{dx_j}(x_0)$. If all of the eigenvalues of A satisfy $Re(\lambda) < 0$ then x_0 is an asymptotically stable rest point of x' = f(x). Proof: We consider the variational system obtained by changing coordinates $y = x - x_0 = \phi(t) - x_0$. This satisfies

$$y' = x' = f(x) = f(y + x_0) = f(y + x_0) - f(x_0) = f'(x_0)y + h(y) = Ay + h(y)$$

$$h(y) = f(y + x_0) - f(x_0) - f'(x_0)y + h(y) = Ay + h(y)$$

Clearly $x = x_0$ is asymptotically stable if and only if y = 0 is an asymptotically stable rest point of y = Ay + h(y). We see that there exist $K \ge 1$, $\alpha > 0$, st $||e^{tA}|| \le Ke^{-\alpha t}$. Let $\sigma > 0$ be chosen so that $\sigma < \frac{\alpha}{K}$. Since $f' \in C(\Omega)$ there is a $\delta_0 \in (0, \epsilon)$ such that $||f'(x_0 + sy) - f'(x_0)|| < \sigma$ for $y \in B_{\delta_0}$. Choose $\delta \in (0, \delta_0 K^{-1})$ and consider the solution $y = \psi(t)$ of (2) satisfying $y_0 \in B_{\delta}$ observe that

$$h(y) = \int_0^1 f'(x_0 + sy)yds - f'(x_0)y = \int_0^1 (f'(x_0 + sy) - f'(x_0))yds \implies ||h(y)|| \le \sigma ||y||$$

We now write for some b > 0,

$$\psi(t) = e^{tA}y_0 + \int_0^t e^{(t-s)A}h(\psi(s))ds \qquad 0 \le t \le b$$

Since $\delta < \delta_0$, there is a b > 0, such that $\|\psi(t)\| < \delta_0$ so

$$\|\psi(t)\| \leq K e^{-\alpha t} \delta + K \int_0^t e^{-\alpha(t-s)} \sigma \|\psi(s)\| ds$$

Using Gronwall's inequality,

$$e^{\alpha t} \|\psi(t)\| \leq K \delta e^{K\sigma t} \implies \|\psi(t)\| \leq K \delta e^{-(\alpha - K\sigma)t} < \delta_0 < \epsilon, \qquad 0 \leq t < b$$

Define $\beta = \sup \{b > 0 : \|\psi(t)\| < \delta_0, 0 \le t < b\}$. We must have $\beta = \infty$ otherwise we reach a contradiction. If $\beta < \infty$ then we obtained, by the same argument as above, $\|\psi(t)\| \le K\delta < \delta_0, 0 \le t < \beta$ then there is a $b \ge \beta$ st $\|\psi(t)\| < \delta_0, 0 \le t < b$. Therefore for an autonomous system

- $\|\psi(t)\| \leq K\delta < \delta_0 < \epsilon, t \geq 0$
- $\bullet \ \|\psi(t)\| \ \leq K \delta e^{-(\alpha-K\sigma)t} \ t \geq 0, \ {\rm so} \ \lim_{t\to\infty} \psi(t) = 0 =$

6.5.1 Non-Autonomous Systems

$$x' = f(t, x)$$

For a solution $x = \phi(t)$, let $y = x - \phi(t)$

$$\frac{dy}{dt} = A(t)y + h(t,y)$$

$$h(t,x) = f(t, y + \phi(t)) - f(t, \phi(t)) - f_x(t, \phi(t))y$$

We want to show $||h(t, y)|| \le \sigma ||y||$ for small $\sigma > 0$.

Let $V : \overline{B(r)} \to \mathbb{R}$ be continuous and positive definite. Then there are functions $\psi_1, \psi_2 : [0, r] \to [0, +\infty]$ such that $\psi_1(0) = \psi_2(0)$ and $\psi_1(||x||) \le V(x) \le \psi_2(||x||)$. These functions are continuous and strictly monotone increasing. Note ψ_1, ψ_2 have inverses with $\psi_i(||x||) = c \iff ||x|| = \psi_i^{-1}(c)$, hence their level surfaces are spheres.

Proof: Let $s \in [0,r]$ and define $m(s) = \min \{V(x) : s \le ||x|| \le r\}$, $M(s) = \max \{V(x) : ||x|| \le s\}$. so $m(||x||) \le V(x) \le M(||x||)$, $x \in \overline{B(r)}$. Also, m(0) = M(0), m(s) > 0, M(s) > 0 for s > 0 since V is

positive definite. Also the functions are continuous. We show this for m(s). Let $\epsilon > 0$. Since $\overline{B(r)}$ is compact $V : \overline{B(r)} \to \mathbb{R}$ is uniformly continuous. Hence there is a $\delta > 0$ such that $|V(x_1) - V(x_2)| < \epsilon$ provided $||x_1 - x_2|| < \delta$, for all $x_1, x_2 \in \overline{B(r)}$. Consider $0 < s_1 < s_2 \le r$, with $|s_1 - s_2| < \delta$. Since $\{x : s_2 \le ||x|| \le r\} \subset \{x : s_1 \le ||x|| \le r\}$, we have $m(s_1) \le m(s_2)$. We want to show $m(s_2) - \epsilon \le m(s_1)$. Suppose $x \in \{x : s_1 \le ||x|| \le s_2\}$ and set $z = s_2 \frac{x}{||x||}$. Then $||z|| = s_2$ so $V(z) \ge m(s_2)$. Also,

$$z - x = s_2 \frac{x}{\|x\|} - \|x\| \frac{x}{\|x\|} = (s_2 - \|x\|) \frac{x}{\|x\|} \implies \|z - x\| = s_2 - \|x\| \le s_2 - s_1 < \delta$$

SO

$$|V(z) - V(x)| < \epsilon \implies V(x) > V(z) - \epsilon \ge m(s_2) - \epsilon$$

This shows $V(x) > m_2(s) - \epsilon$ for all $x \in \{x : s_1 \le ||x|| \le s_2\}$. Thus we can conclude

$$m(s_2) - \epsilon < m(s_1) \le m(s_2) < m(s_2) + \epsilon$$

so then $|s_1 - s_2| < \delta$ implies $|m(s_1) - m(s_2)| < \epsilon$. We have m(s), M(s) satisfying all of the required properies except for the strictly monotone increasing property. To arrange for this we define $\psi_1(s) = \frac{s}{r}m(s)$ and $\psi_2(s) = (s+1)M(s)$ so these are strictly increasing.

6.5.1.1 Regularity of Sub-Level solutions Let $V : \overline{B(r)} \to \mathbb{R}$ is continuous and positive definite and set $S = \left\{x \in \overline{B(r)} : V(x) < c\right\}$. Since V(0) = 0, $S_c \neq \emptyset$, for all c > 0. Let $\psi_1, \psi_2 : [0, r] \to [0, \infty]$ be continuous strictly increasing functions such that $\psi_1(||x||) \le V(x) \le \psi_2(||x||)$, $x \in \overline{B(r)}$. We want to show there are numbers ρ_1, ρ_2 such that $B(\rho_1) \subset S_c \subset B(\rho_2)$. $\rho_1 = \psi_2^{-1}(c), \rho_2 = \psi_1^{-1}(c)$. $x \in B(\rho_1) \iff ||x|| < \rho_1 \implies V(x) \le \psi_2(||x||) < \psi_2(\rho_1) = c \implies x \in S_c$. $x \in S_c \implies \psi_1(||x||) \le V(x) < c \implies \psi_1^{-1}(c) = \rho_2 \implies x \in B(\rho_2)$

6.6 Lyapunov Method

$$x_1' = x_2, x_2' = -x_1 - x_1^2 x_2$$

(0,0) is a critical point. We want to linearize this system at (0,0). We might say $x'_1 = x_2, x'_2 = -x_1$. The eigenvalues are $\pm i$, so there is no conclusion about the stability of (0,0) in nonlinear problem. Instead, we have the Lyapunov approach. Let $V(x) = x_1^2 + x_2^2$ if ϕ is any solution of the system

$$\frac{d}{dt}V(\phi(t)) = \frac{d}{dt}\left(\phi_1^2 + \phi_2^2\right) = 2\phi_1\phi_1' + 2\phi_2\phi_2' = -2\phi_1^2\phi_2^2 \le 0$$

 $V(\phi(t))$ is monotone decreasing and strictly positive unless $\phi_1 = \phi_2 = 0$ and $_{t\to\infty}V(\phi(t)) = V_0$ exists, $V_0 \ge 0$. It also implies (0,0) is a stable equilibrium. In this example V is the Lyapunov function. The key property is that $t \to V(\phi(t))$ is monotone decreasing when ϕ is a solution of the given ODE system. Use the following setup.

Let $f(x_0) = 0$, $u = u(x_0)$ is an open set in \mathbb{R}^N containing x_0 . $V : U \to \mathbb{R}$, $V \in C(\mathbb{R})$. $V(x_0) = 0$, V(x) > 0, $x \neq x_0$ (positive definiteness condition). $t \to V(\phi(t))$ monotone decreasing if is a solution of x' = f(x). Then we say V is a Lyapunov function of the system x' = f(x).

Example : $V(x) = x_1^2 + x_2^2$ in the above example has all of these properties.

Example: Hamiltonian System. $x \to (p,q) q' = \frac{\partial H}{\partial p} p'$ for some function H(p,q). The Hamiltonian function

$$\frac{d}{dt}H(p(t),q(t)) = \frac{\partial H}{\partial p}p' + \frac{\partial H}{\partial q}q' = -\frac{\partial H}{\partial p}\frac{\partial H}{\partial q} + \frac{\partial H}{\partial q}\frac{\partial H}{\partial p} = 0$$

So H(p(t), q(t)) is constant on any solution. Suppose p, q are both 1D, and then suppose $H(p, q) = ap^2 + bq^2$. Positive definiteness depends on a, b. Since H(p, q) is constant on a solution, it is a level curves of a hyperbola if ab < 0, or ellipse if ab > 0. In the latter case, either $\pm H$ is PD and thus is the Lyapunov function, but no such function exists in the former case. So H may or may not be a Lyapunov function depending on details of H and equillibrium point (p_0, q_0) . **6.6.0.2** Lie Derivative Assume the system is x' = f(x), $f \in C^1$. $V : \mathbb{R}^N \to \mathbb{R}$ is C^1 also if $x = \phi(t)$ is a solution.

$$\frac{d}{dt}V(\phi(t)) = V(\phi(t)) \cdot \phi'(t) = V(\phi(t)) \cdot f(\phi(t)) = W(\phi(t))$$

where W is continuous and is the derivative of V along a solution. W is called the Lie Derivative of V along the vector field f. Note that we don't need to know any solution $\phi(t)$ to compute W. In the above example, we have $W(x) = -x_1^2 x_2^2$ and W(x) = 0 respectively. Notice that $W \le 0$ in these cases, so we say W is negative semidefinite.

6.6.0.3 Lie Derivative and Stability Theorem: Assume V is a Lyapunov functions. If W is negative sem-definite, then x_0 is stable. If W is negative definite then x_0 is asymptotically stable.

Proof: WLOG let $x_0 = 0$. By previous lemma there exist r > 0 and ψ_1, ψ_2 which are continuous on C[0, r] strictly increasing, $\psi_1(0) = \psi_2(0) = 0$ such that $\phi_1(||x||) \le \psi_2(||x||)$, $||x|| \le r$. Pick $\epsilon \in (0, r)$, $c = \psi_1(\epsilon)$, $\delta = \psi_2^{-1}(c)$ so $B(\delta) \subset \left\{ x \in \overline{B(r)} : V(x) < c \right\} \subset B(\epsilon)$. Let the starting point of a solution $\xi \in B(\delta) \ x = \phi(t)$ will be the solution of the system with $\phi(0) = \xi$. Then $W \le 0 \implies V(\phi(t)) < V(\phi(0)) = V(\xi) < c$ for all t > 0. This implies $||\phi(t)|| < \epsilon$ for all t > 0 so 0 is stable.

Now suppose W is negative definite. Then there exist $\psi_3 \in C[0, r]$ strictly increasing st $W(x) \leq -\psi_3(||x||)$. $\frac{d}{dt}V(\phi(t)) = W(\phi(t)) < 0$ if $\phi(t) \neq 0$. This implies

$$\psi_1(\|\phi(t)\| \le V(\phi(t)) \le V(\xi) - \int_0^t \psi_3(\|\phi(s)\|) ds$$

by FTC and $W \leq -\psi_3$. If $V(\phi(t))$ does not converge to 0, then it is bounded below say by c_0 . We see

$$\psi_2(\|\phi(t)\|) \ge V(\phi(t)) \ge c_0 \implies \|\phi(t)\| \ge \psi_2^{-1}(c_0) = \rho_0$$

this implies

$$0 < \psi_1(\rho_0) \le V(\xi) - \int_0^t \psi_3(\rho_0) ds = V(\xi) - t\psi_3(\rho) \to -\infty, t \to \infty$$

Thus we have reached a contradiction, which implies $V(\phi(t)) \to 0$. $\phi(t) \to 0$ since $\|\phi(t)\| \le \psi_1^{-1}(V(\phi(t)) \to 0$.

Example, $x'_1 = -x_1 - x_2$, $x'_2 = 2x_1 - x_2^3$. Choose $V(x) = 2x_1^2 + x_2^2$. The properties of V(x) can be checked showing (0,0) is asymptotically stable.

6.6.0.4 Stability via Lyapunov Functions Theorem: x = 0 a rest point of x' = f(x). Let $V : B(0) \rightarrow (0, \infty)$ be continuous, positive definite. $W = V \cdot f$ negative semi definite implies x = 0 is stable OR if it is negative definite implies x = 0 is asymptotically stable.

6.7 Gradient Sytems

$$x' = F(x)$$
 where $F(x) = -f(x)$ for some $f : \mathbb{R}^n \to \mathbb{R}$. Choose $V(x) = f(x)$. Then

$$V \cdot F = f \cdot F(x) = -\|f(x)\|_2$$

Suppose x_0 is an isolated rest point of x' = F(x) = -f(x) and that f(x) has a strict local minimum at x_0 . Then x_0 is asymptotically stable rest point of x' = F(x). Suppose x_0 is an isolated rest point of x' = F(x) = f(x) and that f(x) has a strict local minimum at x_0 . Then x_0 is an asymptotically stable rest point of x' = F(x). f(x) has a strict local minimum at x_0 implies $f(x) - f(x_0) > 0$. For $x \in \{x : 0 < \|x - x_0\| < \delta_1\}$. x_0 an isolated rest point implies $F(x) \neq 0$ in some neighborhood.

6.8 ??

 $x' = f(t, x), x(t_0) = x_0$ with solution $\phi(t, t_0, x_0)$.

Let $x = \psi(t)$ be a solution defined for $t_0 \le t \le \infty$ we say $\psi(t)$ is stable (Lyapunov) if there is a b > 0 such that $||x_0 - \psi(t_0)|| \le b$ implies $\phi(t, t_0, x_0)$ exists for all $t \ge t_0$, and given $\epsilon > 0$ there is a $\delta = \delta(\epsilon, \psi(t_0), f) \in (0, \beta)$ such that $||x_0 - \psi(t_0) - \psi(t)|| < \epsilon$ for all $t \ge t_0$. $\psi(t)$ is asymptotic stable if in addition there is another $\delta \in (0, b)$ such that $||x_0 - \psi(t_0)|| < \delta$ implies $||\phi(t, t_0, x_0) - \psi(t)|| \to 0$ as $t \to \infty$. Suppose $x = \psi(t)$ is a solution for $t \ge t_0$. Set $y = x - \psi(t)$. Then

$$y' = x' - \psi'(t) = f(t, x) - f(t, \psi(t)) = A(t)y + h(t, y)$$

where $A(t) = f_x(t, \psi(t)), h(t, y) = f(t, y + \psi(t)) - f(t, \psi(t)) - f_x(t, \psi(t))y.$

$$h(t, y_1) - h(t, y_2) = \int_0^1 \left(f_x(t, y_2 + s(y_1 - y_2) + \psi(t)) - f_x(t, \psi(t)) \right) (y_2 - y_1) ds$$

So $0 \le s \le 1$ implies

$$||(y_2 + s(y_1 - y_2) + \psi(t)) - \psi(t)|| = ||sy_1 + (1 - s)y_2|| \le s||y_1|| + (1 - s)||y_2||$$

If $||y_1||$, $||y_2|| < \delta$, then $||(y_2 + s(y_1 - y_2)\psi(t)) - \psi(t)|| \le \delta$. So $f_x(t, y)$ is uniformly continous as long as we restrict t to lie in $[t_0, t_0 + T]$ for some T > 0 (and assume $||y_2||$, $||y_1|| \le \rho$). This implies for all $\epsilon > 0$, $\delta > 0$, such that $||h(t, y_1) - h(t, y_2)|| < \epsilon$ provided $t \in [t_0, t_0 + T]$ and $y_1, y_2 \in B_{\delta}$.

Now suppose $\psi(t)$ is a *T*-periodic solution of x' = f(t, x) where f(t + T, x). $y = x - \psi(t)$ implies y' = A(t)y + h(t, y). $A(t) = f_x(t, \psi(t))$ so $A(t + T) = f_x(t + T, \psi(t)) = f_x(t, \psi(t)) = A(t)$.

$$h(t+T,y) = f(t+T,y) - f(t+T,\psi(t+T)) - f_x(t+T,\psi(t+T))y = h(t,y)$$

Theorem: If the Floquet Multipliers of x' = A(t)x all lie in $\{z \in |z| < 1\}$, then $\psi(t)$ is asymptotically stable. Idea of Proof: Let $\Phi(t) = P(t)e^{tR}$ be the fundamental matrix with $\Phi(0) = I$. We have P(0) = I and $P(t + T) = P(t), t \in \mathbb{R}$. If λ is a Floquet multiplier then $\lambda = e^{T\rho}$, where ρ is an eigenvalue of R. $|\lambda| < 1 \iff Re(\rho) < 0$.

$$P^{-1}(t)\left(y(t) = P(t)e^{tR}y(0) + P(t)e^{tR}\int_0^t e^{-sR}P(s)h(s,y(s))ds\right)$$

gives us for $w(t) = P^{-1}(t)y(t)$,

$$w(t) = e^{tR}w(0) + \int_0^t e^{(t-s)R}P^{-1}(s)h(s, P(s)w(s))ds$$

which implies

$$w' = Rw + g(t, w),$$
 $g(t, w) = P^{-1}h(t, P(t)w(t))$

and we note that $w = 0 \iff y = 0$. Note

$$\|g(t,w_1) - g(t,w_2)\| \le \|P^{-1}(t)\| \|P(t)w_1 - P(t)w_2\| \epsilon_1 \le \epsilon_1 \|P^{-1}(t)\|_{\infty} \|P(t)\|_{\infty} \|w_1 - w_2\| \le \epsilon \|w_1 - w_2\|$$

Given that we can choose $\epsilon_1 < \epsilon (\left\|P^{-1}(t)\right\|_\infty \|P(t)\|_\infty)^{-1}$

Now we use a slightly modified proof of asymptotic stability for w = 0 solution of w' = Rw + g(t, w) to show y = 0 is asymptotic stable solution of y' = A(t)y + h(t, y) and $\psi(t)$ is an asym. stable solution of x' = f(t, x). Note. Suppose $x = \psi(t)$ is a *T*-periodic solution of x' = f(x). It turns out that the linear variation system in this case always has a Floquet multiplier $\lambda = 1$. This is seen as follows.

$$\psi'(t) = f(\psi(t)) \implies \psi''(t) = f_x(\psi(t))\psi'(t) \implies (\psi')'(t) = A(t)\psi'(t)$$

which implies $\psi'(t)$ is a solution of y' = A(t)y. So $\psi'(t) = \Phi(t)\psi'(0)$ implies $\psi'(T) = \Phi(T)\psi'(0)$. $\psi(t+T) = \psi(t)$ implies $\psi'(T) = \psi'(0)$ implies $\Phi(T)\psi'(0) = \lambda\psi'(0) = (1)\psi'(0)$

6.9 Invariant Sets

6.9 Invariant Sets

x' = f(x) $f \in C^1(\Omega), \Omega \in \mathbb{R}^N, open$

Definition: A set of points $E \in \Omega$ is said to be a positively /negatively (respectively) invariant if for each $x_0 \in E$ the solution $\phi(t, x_0)$ of the above equation through satisfies $\phi(t, x_0) \in E$ for all $t \ge 0$, $t \le 0$ (respectively). Sets are invariant if they are both positively and negatively invariant. Examples:

- If $f(x_0) = 0$ then $\{x_0\}$ is an invariant set
- If $\phi(t, x_0)$ is T- periodic thne the solution will be the orbit

$$(x_0) = \{\phi(t, x_0) : 0 \le t \le T\}$$

- Consider $x' = f(x) = -x(1 x^2)$. {(-.5, .5)} is positively invariant, {(.5, 1.5)} is negatively invariant. {(-1, 1)} is invariant. [(-1, 1)] is invariant.
- If V ∈ C¹(Ω) is a Lyapunov function for the above equation, f(0) = 0, and V(x) · f(x) ≤ 0, x ∈ B_δ for some δ > 0 then S_c = {x ∈ B_δ : V(x) ≤ C} is positively invariant for c > 0.

Definition. Suppose $\phi(t, x_0)$ is a solution that exists for all $t \ge 0$. The positive limit set, denoted by $\omega(x_0)$, of x_0 (or $\phi(t, x_0)$) is the set of all points $y \in \Omega$ for which there is a sequence of times $\{t_n\}$ satisfying (1) $t_n \to \infty$ as $n \to \infty$ and (2) $\phi(t_n, x_0) \to y$ as $n \to \infty$. The α -limit set is $\alpha(x_0) = \bigcap_{\tau \le 0} \{\phi(t, x_0) : t \le \tau\}$.

Lemma: If the oslution $\phi(t, x_0)$ exusts for all $t \ge 0$ and the orbit $+(x_0) = \{\phi(t, x_0) : t \ge 0\}$ remains in a compact set $K \subset \Omega$, then $\omega(x_0)$ is a nonempty compact subset of Ω that is invariant. Furthermore $\operatorname{dist}(\phi(t, x_0), \omega(w_0)) \to 0$ as $t \to \infty$ (although not uniquely).

Proof. $\omega(x_0)$ is nonempty: Let $\{t_n\} \subset [0,\infty)$ be a sequence with $t_n \to \infty$. Then $\{\phi(t_n, x_0)\}$ is a sequence contained in K. Hence there is a subsequence $\{\phi(t_{n_k}, x_0)\} \subset K$ and a point $y \in K$ such that $\phi(t_{n_k}, x_0) \to y$ as $h \to \infty$. This implies $y \in \omega(x_0) \neq \emptyset$.

 $\omega(x_0)$ is closed: Suppose $\{x_n\} \subset \omega(x_0)$ and $x_n \to y$ as $n \to \infty$. For each *n* there is a $t_n > n$ such that

$$\|\phi(t_n, x_0) - x_n\| < \frac{1}{n}$$

which implies

$$\|\phi(t_n, x_0) - y\| \le \|\phi(t_n, x_0) - x_n\| + \|x_n - y\| < \frac{1}{n} + \|x_n - y\|$$

So $\phi(t_n, x_0) \to y$ as $n \to \infty$ so $y \in \Omega(w_0)$. This means omega limit set is compact since is a closed subset of a compact set K.

$$\begin{split} & \omega(x_0) \text{ is invariant: Let } y \in \omega(x_0) \text{ and choose } \{t_n\} \text{ so that } x_n = \phi(t_n, x_0) \to y \text{ as } n \to \infty. \text{ By continuous dependence we know } \phi(t, x_n) \to \phi(t, y) \text{ as } n \to \infty, \text{ for each } t \in (\alpha(y), \beta(y)) \text{ where } (\alpha(y), \beta(y)) \text{ is the maximal interval of existence of } \phi(t, y). \text{ But then } \phi(t + t_n, x_0) = \phi(t, \phi(t_n, x_0)) = \phi(t, x_n) \to \phi(t, y) \text{ as } n \to \infty. \text{ This implies } \phi(t, y) \in \omega(x_0) \text{ for all } t \in (\alpha(y), \beta(y)). \ \omega(x_0) \subset K \implies (\alpha(y), \beta(y)) = (-\infty, \infty). \ \phi(t, x_0) \to \omega(x_0) \text{ as } t \to \infty. \text{ We need to show that for any } \epsilon > 0 \text{ there is a } T \ge 0 \text{ such that } \operatorname{dist}(\phi(t, x_0), \omega(w_0)) < \epsilon. \text{ But } \{\phi(t_n, x_0)\} \text{ K implies there is a subsequence } \{\phi(t_n, x_0)\} \text{ and a point } y \in K\phi(t_{n_k}, x_0) \to y \text{ as } k \to \infty. \text{ So } t \in \omega(x_0). \text{ Therefore there are times } t_n \text{ such that } \operatorname{dist}(\phi(t, x_0), \omega(w_0)) < \epsilon. \end{split}$$

6.9.0.5 Lemma

$$x' = f(x) \qquad x(0) = x_0$$

 $\phi(t, x_0)$ exists for all $t \ge 0$. $^+(x_0) = \{x = \phi(t, x_0) : t \ge 0\} \subset K$, compact which implies $\omega(x_0)$ non-empty, compact, invariant and $\phi(t, x_0) \rightarrow \omega(x_0)$ as $t \rightarrow \infty$. Also $\omega(x_0)$ is also connected. If $\omega(x_0)$ cannot be decomposed into 2 disjoint closed sets.

Proof: If not e have $\omega(x_0) = U \cup V$ where U, V are closed (therefore compact) and $U \cap V = \emptyset$. Let

 $d = \operatorname{dist}(U, V)$. Since U, V are compact and disjoint, d > 0. But then there are sequences of times $\{t_{2n}\}$ and $\{t_{2n+1}\}$ such that $t_{n+1} > t_n$ for all n and $\operatorname{dist}(\phi(t_{2n}), U) < \frac{1}{3}d$, $\operatorname{dist}(\phi(t_{2n+1}), V) < \frac{1}{3}d$. Since the distance function is continuous, the function $f(t) = \operatorname{dist}(\phi(t, x_0), U)$ is continuous. We have $f(t_{2n}) < \frac{d}{3}$ and $f(t_{2n+1}) > \frac{2d}{3}$. So by IVT, there is a time $\tilde{t}_n, t_{2n} < \tilde{t}_n < t_{2n+1}$ such that $\operatorname{dist}(\phi(\tilde{t}_n, x_0), U) > \frac{1}{3}d$ and $\operatorname{dist}(\phi(\tilde{t}_n, x_0), V) > \frac{1}{3}d$. Hence $\tilde{n} \to \infty$ and $\phi(\tilde{t}_n, x_0) \to \omega(x_0)$ and $\omega(x_0) \notin U \cup V$: a contradiction.

6.9.0.6 Lemma

$$x' = f(x) \qquad f \in C^1(\Omega)$$

Let $V \subset C^1(\Omega)$ and $W(x) = V(x) \cdot f(x) \leq 0, x \in \Omega$. Suppose $x_0 \in \Omega$ and $\phi(t, x_0)$ exists for all $t \geq 0$ with $^+(x_0) \subset K$, a compact set, so that $\omega(x_0)$ is non-empty. Then $W(x) = 0, x \in \omega(x_0)$.

Proof: We have $\frac{d}{dt}V(\phi(t,x_0)) = (\phi(t,x_0)) \cdot f(\phi(t,x_0)) \leq 0$ which implies $t \to (\phi(t,x_0))$ is a non-increasing function. Also $V(\phi(t,x_0))$ is bounded below since $\phi(t,x_0) \in K$, $t \geq 0$. Then $\lim_{t\to\infty} V(\phi(t,x_0)) = V_{\infty}$, which is some number. Now suppose $y_1, y_2 \in \omega(x_0)$. There are sequences $\{t_n\}, \{s_n\}$ such that $\phi(t_n, x_0) \to y_1$ and $\phi(s_n, x_0) \to y_2$ where $t_n, s_n \to \infty$. Then the continuity of V implies

$$\lim_{n \to \infty} V(\phi(t_n, x_0)) = V(y_1) = V_{\infty} = V(y_2) = \lim_{n \to \infty} V(\phi(s_n, x_0))$$

Therefore V(x) is constant on $\omega(x_0)$ which implies W(x) = 0, $x \in \omega(x_0)$.

6.9.0.7 Theorem

$$x' = f(x) \qquad f(0) = 0$$

Suppose $V \in C^1(B_r)$ is positive definite, $W(x) = V \cdot f(x) \leq 0$, $x \in B_r$ and $S_c = \{x \in B_r : V(x) \leq c\}$ is contained in a compact subset of B_r for some c > 0. If the only invariant subset of the set $z = \{x \in B_r : W(x) = 0\}$ is $\{0\}$, then x = 0 is asymptotically stable.

Proof: Choose $x_0 \in S_c$. Since $V(\phi(t, x_0)) \leq c$, $t \geq 0$. We have $+(x_0)$ remains in a compact set. Hence $\omega(x_0)$ is nonempty and invariant. Also $\omega(x_0) \in z$, but then $\omega(x_0) = \{0\}$ for any x_0S_c .

6.9.0.8 Example Consider

$$x' = (A - By)x \qquad y' = (Cx - D)y$$

The rest points are x = 0 or $y = \frac{A}{B}$. y = 0 or $x = \frac{D}{C}$. The invariant sets are $L_1 = \{(x, y) : x = 0, y \ge 0\}$, $L_2 = \{(x, y) : x \ge 0, y = 0\}$, $Q = \{(x, y) : x > 0, y > 0\}$. We can remove the dimensions in space by the transformation $\tilde{x}\frac{D}{C}$, $\tilde{y}\frac{A}{B} = y$. We can scale time by using $\tau = At$ and let $a = \frac{D}{A}$. So our new equations are

$$\tilde{x}' = (1-y)x \qquad \tilde{y}' = a(x-1)y$$

Set $f(x) = x - \ln(x) - 1$. Consider V(x, y) = af(x) + f(y). This is constant along solutions since its an integral curve of the separable equation. So by construction, V(1, 1) = 0, V(x, y) > 0.

6.9.0.9 Example Consider

$$x' = (1 - y - \lambda x)x = \alpha(x, y)x \qquad y' = a(x - 1 - \mu y)y = \beta(x, y)y$$

Where $a, \lambda, \mu > 0$. There are four rest points. The one in the first quadrant excluding the axes is

$$(x_0, y_0) = \left(\frac{1+\mu}{1+\lambda\mu}, \frac{1-\lambda}{1+\lambda\mu}\right)$$

To create a Lyapunov function for this critical point, we consider a perturbed version of the function in the previous problem.

$$V(x,y) = \gamma_1 f\left(\frac{y}{y_0}\right) + \gamma_2 a f\left(\frac{x}{x_0}\right)$$

We seek to determine γ_1, γ_2 . We see

$$\frac{\partial V}{\partial x} = \frac{\gamma_2}{x_0} a f'\left(\frac{x}{x_0}\right) = \gamma_2 a \frac{x - x_0}{xx_0} \qquad \frac{\partial V}{\partial y} = \frac{\gamma_1}{y_0} a f'\left(\frac{y}{y_0}\right) = \gamma_1 \frac{y - y_0}{yy_0}$$

For convenience write

$$\alpha(x,y) = \alpha(x,y) - \alpha(x_0,y_0) = -(y-y_0) - \lambda(x-x_0) \qquad \beta(x,y) = \beta(x,y) - \beta(x_0,y_0) = a((x-x_0) - \mu(y-y_0))$$

So then

$$\left\langle \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right\rangle \cdot \left\langle x \alpha(x, y), y \beta(x, y) \right\rangle = a \left(\frac{-\gamma_2}{x_0} \left((x - x_0)(y - y_0) + \lambda(x - x_0)^2 \right) + \frac{\gamma_1}{y_0} \left((y - y_0)(x - x_0) - \mu(y - y_0) \right) \right)$$

So if we choose $\gamma_2 = x_0$, $\gamma_1 = y_0$,

$$\left\langle \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y} \right\rangle \cdot \left\langle x \alpha(x, y), y \beta(x, y) \right\rangle = -a \left(\lambda (x - x_0)^2 + \mu (y - y_0)^2 \right)$$

So then

$$V(x,y) = y_0 f\left(\frac{y}{y_0}\right) + a x_0 f\left(\frac{x}{x_0}\right)$$

We see that $V(x_0, y_0) = 0$, V(x, y) > 0 for $(x, y) \neq (x_0, y_0)$, and $V \cdot \langle x \alpha(x, y), y \beta(x, y) \rangle$ is negative definite so we conclude that (x_0, y_0) is an asymptotically stable rest point.